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ABSTRACT 

A Simulated Annealing Genetic Algorithm (SAGA) is pre- 
sented for blind restoration of a nonlinearly-degraded image 
with additive Gaussian noise. The degradation is modelled 
by a quadratic Volterra filter. Deconvolution of the orig- 
inal image and the unknown Volterra filter is formulated 
as a constrained optimisation problem, the cost function of 
which is minimised by the SAGA. 

1. INTRODUCTION 

Image degradation involves both linear and nonlinear pro- 
cesses, which include relative motion between the object 
and camera, wrong focus, nonlinearity of the electro-optical 
sensor, and defects of optical lenses. A general model for 
image degradation is 

\il ,i2 / 

(1) 
where T( .) defines a memoryless nonlinearity. d( n 1, n2, il , i2) 
is the 2D impulse response of the bhu-ring system at pixel 
(nl, n2), @ represents a pointwise operation, and v(nl, n2) 
is the corruptive noise process [l]. It is usually assumed 
that the blurring function is space-invariant. and the noise 
v(nl, n2) is an additive white Gaussian process. In general, 
the function T is ignored. However, in some applications 
it is necessary to take the sensor nonlinearit,y into account. 
Tekalp and Pavlovid [l, Chapter 81 conclude that if the loga- 
rithmic relationship between the optical density and the in- 
cident exposure of scanned photographic images is ignored, 
then this can result in unacceptable restorations. In this 
paper, a Volterra filter with an additive noise term is used 
as a general model for image degradation. 

The Volterra filter is suitable for modelling equation (l), 
since the overall effect of a memoryless nonlinear transfor- 
mation of a linear filter is a nonlinear mapping with mem- 
ory. Other applications of Volterra filters include restora- 
tion of images degraded by quantum-limited imaging con- 
ditions. This type of degradation occurs in remote sensing 
and medical imaging, in which low levels of radiation are 
necessary to protect the patient. 

The degraded image g(nl, n2) is modelled as the out- 
put of a Volterra filter whose input is the original image 

f(nl, n2), plus additive noise v(nl, nz): 

g(nl,nz) = H[f(nl, n2)] + v(nl, n2) 

= ho + Hl[f(nl,nz)] + Hz[f(nl, n2)] 

+w(nl, n2) (4 

where ho is a constant. 

Hl[f(rh,nz)] = C hl(il,iz)f(nl - i1,n2 -i2) (3) 

(il ,h)ES 

is the linear Volterra operator, 

H2[f(nl, n2)l = 

(il,ilZ2)ESh (’ 

2 rl,i2,jllj2)f(nl - il,n2 -iz). 

f(nl - 5, n2 - j2) (4) 

is the quadratic Volterra operator and S is the support re- 
gion of the filter. 

As in the 1D case, the 2D Volterra kernels are symmetric 
in that any permutation of the variable couples (il, iz) and 
(j~,j2)leavesh2(i~~iz,j~,~2)unchanged,i.e. hz(il,iz,jl:jz) 

= h2(jl,.h,il,i2). 
If the non1inearit.y is pointwise, as in equation (1). then 

several observations can be made. Firstly, the particular 
symmetry of the linear blur d(il , i2) is preserved in the lin- 
ear Volterra kernels. Furthermore, the symmetry can be 
extended to the quadratic kernels by considering the in- 
put products d(il, i2)d(jl, jz), Vi*, i2. j,! 5. This provides 
a means of reducing the number of independent variables 
needed to model the Volterra system. Secondly, since it 
is generally assumed that d(il,iz) 2 0, the sign of the 
quadratic kernels is determined by the sign of Tt2) (f), the 
second-derivative of T evaluated at the image mean 7. 

The following constraints arc applied to the Volterra 
filter: 

1. ho = 0; 

2. hl(il, iz) > 0; 

3. c hl(il, i2) = 1; 

4. h2(ilri2,jlrj2) 5 0. 

The first three constraints follow from standard assump- 
tions on linear degradations, namely, that the image is 
formed from radiant energy (which is unsigned), and that 



the energy is conserved in the blurring process when hz(.) = 
0. The fourth constraint results from the particular case 
when T is convex, i.e. the sensor compresses the inten- 
sity range of the image. It should be pointed out that the 
Volterra filter can model many types of image degradations! 
and the constraints depend on the particular application. 
The sensor nonlinearity is used as an example to illustrate 
one application of the Volterra filter to image restoration. 

Blind deconvolution of linearly-degraded images by sim- 
ulated annealing (SA) was first proposed by McCallum [2]. 
In this method, the following multi-modal cost function is 
minimised: 

J(P, ill = c (4 nl,n2)-h;(nl,n2)*j(nl,n2))2, (5) 

where * denotes convolution. The image and the blurring 
function are assumed to be positive with known finite sup 
port. The algorithm provides reasonable results in the pres- 
ence of noise, but convergence to the global minimum is 
slow. For realistically-sized images, SA is too computation- 
ally intensive to produce good results. 

A genetic algorithm (GA) has recently been applied to 
minimisation of equation (5) [3]. The original image was 
assumed to be binary with known finite support, and a 
blurring function of the following form was considered: 

hl(nl,nz) = 
l/ira2, nt + 72: < a2 

0, otherwise ’ (6) 

with unknown parameter a. However, GA’s lack an efficient 
local search mechanism; while they are able to locate the 
neighbourhood of the optimum very quickly, they are not 
suited to fine-tuning of solutions. Chen et al [3] compensate 
for this by using an extremely large population (300 for the 
image and 10 for the blurring function). The large memory 
requirements make the basic GA unsuitable for processing 
realistically sized images. 

In this paper, a hybrid SAGA is applied to minimisation 
of 

J(j, ii, A) = 

C(( 9 nl, n2) - W(m, n2)1J2 

n1 SW 

+p c WC nl, nz)(c(nl, n2) * j(nl, n2))2. (7) 

n1 sm 

The second term of (7) follows from a piecewise smoothness 
constraint on the original image [4]. The Laplace filter 

c= 

[ 

0 -0.25 0 

-0.25 1 -0.25 
0 -0.25 0 1 

functions as the regularization operator, and X is known as 
the regularization parameter. The weight matrix W(nr , nz) 
allows the amount of smoothing to be adjusted locally ac- 
cording to the variance of the degraded image. It is defined 
as 

W(nl,nz) = 
1 

1 + aa2(nr, n2)’ 

where a2(nr, nz) is the local variance of the blurred image 
g [4]. The constant CI is chosen such that 

max(W(nr , nz))/ min(W(nr , n2)) = 2000. 

The image is assumed to be positive, with known finite 
support. 

2. SIMULATED ANNEALING AND GENETIC 
ALGORITHMS 

Genetic algorithms are a stochastic search technique based 
on natural selection and genetics. GA’s differ from con- 
ventional optimisation techniques in that they are parallel, 
probabilistic, and use only the objective function. They 
are superior to gradient-descent techniques, which are bi- 
ased toward local optima. Although no formal proof of 
convergence exists for GA’s, they are usually able to locate 
the neighbourhood of the optima quickly. However, it is 
known that GA’s, in their basic form, are not well-suited to 
fine-tuning of solutions. Furthermore, GA’s are difficult to 
apply to large-scale optimisation problems because of the 
large memory requirements. 

GA’s work with a population of individuals (or solu- 
tions), each of which is assigned a certain fitness. The 
particular traits of an individual are encoded in the chro- 
mosome, which consists of a string of parameters (genes). 
All GA’s consist of the three basic operations - selection, 
crossover, and mutation. From the parent generation, indi- 
viduals are selected for reproduction such that high-fitness 
individuals have a higher probability of passing on genetic 
material to the next generation. Recombination occurs 
through crossover and mutation. In crossover, individuals 
are randomly paired, and genetic information from each of 
the parents is combined with a certain probability to pro- 
duce two new offspring. If no crossover occurs, then the 
parents are simply duplicated. Mutation provides a means 
of introducing new genes into the population, by allowing 
each gene of an individual to mutate with a certain proba- 
bility. 

Simulated annealing is a stochastic descent technique 
derived from statistical mechanics. If a system is in ther- 
mal equilibrium at temperature T, then the probability 
that the system is in a particular atomic configuration is 
P(E) = exp(-E/lcBT), where E is the energy of the config- 
uration, kg is Boltzmann’s constant, and T is the tempera- 
ture. Simulated annealing attempts to reach the minimum- 
energy (cost) state through a series of atomic reconfigu- 
rations (local perturbations) which are accepted if the en- 
ergy is decreased, and accepted with probability P(AE) = 
exp(-AE/T) if the energy is increased. For T > 0, there 
is always some probability that a detrimental step will be 
accepted, thus allowing the algorithm to escape from local 
minima. 

Analysis of the algorithm as a Markov chain shows that 
SA will converge in distribution to the minimum energy 
states, provided that certain conditions on the local transi- 
tions and cooling schedule are met [5]. However, since the 
required cooling schedule is too slow to implement, faster 
approximations are used at the expense of a guarantee of 
optimality. In practise, SA is able to locate near-optimal so- 



lutions for many combinatorial optimisation and nonlinear 
programming problems. 

The local search capability of a GA can be improved 
by implementing SA-type mutation and crossover. Adler 
[S] has developed a hybrid algorithm in which crossovers 
and mutations are accepted according to the SA criterion. 
This is equivalent to the standard GA when ‘1‘ = 00, i.e. 
all crossovers and mutations are accepted. If the temper- 
ature is lowered gradually, the SAGA is able to maintain 
population diversity, while reducing disruption to the so- 
lutions through crossover and mutation as the population 
fitness increases. Furthermore, the improved local search 
mechanism enables the use of a much smaller population. 

The convergence properties of the SAGA can be anal- 
ysed by considering the population members individually 
and viewing crossover as a special form of local transition. 
Provided that the crossover operator meets the conditions 
specified in [5], the convergence properties of SA should be 
upheld in the SAGA. Furthermore, implementation of fit- 
ness selection does not interfere with the individual Markov 
chains. 

3. THE SAGA ALGORITHM FOR IMAGE 
RESTORATION 

The pixels of the original image are treated as continuous 
variables, on the assumption that the number of possible 
input levels is large (> 20), as in the case of an S-bit image. 
This allows the implementation of efficient heuristic oper- 
ators. Each chromosome is formed by mapping the image 
and filter estimates to a vector. The population is ran- 
domly initialised within the bounds for each variable, and 
the linear kernels are normalised so that c hl (il, i2) = 1. 

The fitness is defined to be f = -J(j! fi, X), as given 
by equation (7). The algorithm can be implemented with 
or without fitness selection. At lower temperatures, the im- 
plementation of a selection mechanism does not noticeably 
affect the algorithm’s performance, since SA-type opera- 
tions are sufficient to move the population toward maximal 
fitness. At higher temperatures, the algorithm relies more 
on the GA search. 

If fitness selection is implemented, then individuals are 
chosen for reproduction by means of probabilistic binary 
tournament selection. Pairs of individuals are randomly 
chosen from the population, and the individual with higher 
fitness wins the tournament with probability pw 5 1. The 
winner is then copied into the next generation. This method 
of selection lessens the sensitivity of the algorithm to the fit- 
ness function, since the selection probability is not directly 
proportional to the fitness. 

During crossover, chromosomes are randomly paired. 
For each pair of chromosomes, a mask M of random num- 
bers is generated in the range [0, l]. The fist child is pro- 
duced by multiplying each gene z(i) of the first parent by 
the mask value M(i), and the genes of the second parent by 
the complementary mask 1 - M(i). This gives a weighted 
average of the genes from both parents. Before the cost 
is recalculated, the linear kernels are renormalised. The 
cost of the child is compared to that of the first parent, 
and acceptance is determined by the SA criterion, with the 
crossover temperature T, being set to the standard devia- 

tion of the fitness of the previous generation. The parents 
are then exchanged to produce the second child. 

A mutation operator is applied to each gene with fixed 
probability pm. The gene is mutated by an amount Ae( i) = 
a(i)r, where o(i) is the step size and I’ is a random num- 
ber uniformly distributed in the range [-1, 11. If the new 
value falls outside the feasible range, then the process is re- 
peated until a suitable value is found. After mut.ation of a 
linear kernel, the kernels are renormalised before the cost is 
recalculated. For the image genes, it is not necessary to re- 
calculate the entire cost function after each mutation, since 
only output values in a region of size S are affected. 

The step size for mutation is adapted according to the 
method developed by Corona et al [7] for SA, which at- 
tempts to maintain a 1:l ratio between the number of ac- 
cepted and rejected mutations. A single step size is used 
for the image, and this is updated after each generation. If 
the pixel lies outside of the image support, then a(i) = 0. 
The step size for each Volterra kernel is updated after Ns 
generations. The maximum step size for both the image 
and the kernels is defined to be the search range for that 
variable. The mutation temperature T,,, is decreased by a 
factor of rr every NrNs generations. 

4. SIMULATIONS 

To reduce the number of variables (for a 3 x3 linear support, 
there are 45 distinct second-order kernels), it was assumed 
that the linear part of the degradation was of the form 

13 12 /3 

HI = [ 12 11 12 1 , (8) 
13 12 13 

or in vector notation 

hr = [ /3 12 13 12 11 12 13 12 13 1’. (9) 

For a pointwise nonlinearity, this would yield 

r 93 q6 93 6 95 fi 93 q6 93 - 
ti 92 fi q2 94 q2 96 q2 6 
93 q6 93 & q5 @ 93 q6 4 
q6 92 96 q2 94 q2 q6 @ + 

Hz = q5 44 95 94 ql cl4 cl5 4 95 , 
q6 92 96 92 94 @ q6 @ & 
q3 96 q3 ti q5 @ q3 q6 93 
fi @ q6 92 94 92 96 q2 96 

- 93 96 93 q6 95 Ss 93 6 $3 - 

(10) 
where the (i, j)-th entry corresponds to the quadratic kernel 
hz(i,j) under the mapping in equation (9). 
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Figure 1: Original and Degraded Images 

(a) No noise (X = (b) 30 dB noise 

0) (A = 0) 

(c) 30 dB noise 
(A = 1) 
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(d) 20 dB noise 
(A = 10) 

Figure 2: Restored Geometric Image 

Figure 3: Restored Binary Image 

The algorithm was tested on two different images - 
a binary image of the letter B, and a geometric image, as 
shown in Figure 1 (a) and (b). The degradation parameters 
for both images are listed below. 

11 0.1479 
12 0.1183 
/3 0.0947 

91 -0.0066 

92 -0.0042 

43 -0.0027 

94 -0.0053 

95 -0.0042 

a -0.0034 

Figure 1 (c) and (d) show the degraded images with 30 dB 
noise. 

The search ranges for the image, linear kernels, and 
quadratic kernels were defined to be [0, 11, [0, 11, and [- 1, 01, 
respectively. In all simulations shown, a population size 
Np = 4 was used. The initial step size was set to one-fifth 
the search range for each variable. The kernel step sizes 
were updated every Ns = 20/(pmNp) generations. The 
mutation temperat.ure was initialised to To = 0.1 and de- 
creased by a factor of rT = 0.85 after NT = 2 updates of 
the step size. For t,he results listed in Tables 1 and 2, no fit- 
ness selection was used. However, when several of the sim- 
ulations were re-run with fitness selection, there was only 
small improvement. .4t higher temperatures, the difference 
in performance was more significant. 

The algorithm was tested on the degraded geometric 
image without noise, with 30 dB noise, and with 20 dB 
noise. In the noiseless case, the regularization parameter in 
equation (7) was set to 0. Although the SAGA was able 
to find image and kernel estimates for which the cost was 
very small (0(10-4)), the restored image was very noisy, as 
shown in Figure 2 (a). In this case, the regularization term 
can be used to incorporate additional information about 
the original image f. based on the characteristics of g, into 
the restoration. Without this information, it seems that for 
multi-level images, the problem is too ill-defined to obtain 
a good image estimate. For lower SNR’s, it was necessary 
to use larger regularization terms, as shown in Figure 2 
(b)-(d). Even though the piecewise smoothness constraint 
produced better image estimates, the corresponding filter 



Table 1: Restoration of a Geometric Image 
SNR (dB) co 30 30 20 

x 0 0 1 10 
Pm 0.25 0.25 0.25 0.25 
gen. 4000 2000 2000 2000 
fevaI 1476376 738919 738466 738918 

11 0.1634 0.1499 0.2466 0.3626 
12 0.1132 0.1174 0.0637 0.0002 
13 0.0959 0.0951 0.1246 0.1591 
41 -0.0120 -0.0021 -0.0002 -0.0002 
92 -0.0034 -0.0036 -0.0019 -0.0023 
93 -0.0050 -0.0022 -0.0032 -0.0025 
94 -0.0026 -0.0019 -0.0028 -0.0000 
95 -0.0031 -0.0048 -0.0064 -0.0012 

d;E -0.0006 2.2040 -0.0018 3.6517 -0.0022 1.1671 -0.0032 1.8131 
SNRI 3.3489 2.0151 6.3051 4.1276 

J(j, I?, A) 2.87 x 1O-4 0.0157 0.0665 0.3324 
J(f, H, A) 0 0.0250 0.1738 0.9184 

estimates were much worse. These are listed in Table 1. As 
a measure of the goodness of the restoration, the percentage 
mean square error (MSE) and improvement in signal-to- 
noise ratio (SNRI) were used. They were defined as follows: 

MSE(;) = 100 
C,, ,na (af(nl I n2) - f(m I n2)J2 

c nl,n2 f2(n17 n2) 
All) 

where a = c,,,,, f(nl,nz)J(nl,nz)/C,,,,, i2(nl,n2). 

In the last two rows of the table, the costs of the estimated 
and actual image-filter convolutions are compared. 

For the degraded binary image, it was not necessary to 
use a regularization term to obtain reasonable image esti- 
mates for mild noise levels. The results of the SAGA for 30 
dB and 20 dB noise are shown in Figure 3 and Table 2. 

Corona’s SA algorithm was tested against the SAGA by 
setting Np = 1 and P,,, = 1. While the number of function 
evaluations (feval) for both algorithms was approximately 
the same, the advantage of the SAGA is that most of these 
evahrations can be done in parallel, since they arise from 
SA mutation. In the case of the geometric image with 30 
dB noise and X = 0, the SA algorithm found estimates 
with J(f, H,X) = 0.0183 and MSE = 4.6526 in 2000 scans 
(feval = 722361). This can be compared to the results in 
Table 1. The improvement in MSE may be due to the 
averaging which occurs during crossover. However, before 
further conclusions about the efficiency of the algorithms 
can be made, the effect of the population size and mutation 
rate must be studied more thoroughly. 

5. CONCLUSIONS 

In this paper, a method of combining simulated annealing 
and genetic algorithms was presented for image restoration. 

‘1 Nle 2: Restc 
SNR (dB) 

x 

Pm 
gen. 
fcval 

11 

12 

/3 

91 

92 

43 

44 

45 

IZE 

SNRI 

J(i A, A) 
J(f, H, A> 

tion of a Binary Imi 
30 20 
0 0 

0.125 0.25 
4500 2000 

413255 351576 
0.1503 0.1403 
0.1189 0.1231 
0.0935 0.0919 
-0.0005 -0.0005 
-0.0040 -0.0035 
-0.0016 -0.0002 
-0.0055 -0.0039 
-0.0056 -0.0044 
-0.0024 -0.0022 
0.1718 1.5741 

191.1583 21.0648 

0.0080 0.0703 
0.0089 0.0889 

The degradation was modelled by a Volterra filter, and a 
set of constraints were developed which incorporated partial 
knowledge of the nonlinearity under consideration. Areas 
for further research include the effect of the constraints on 
the solution, and the influence of the SAGA parameters on 
the algorithm’s performance. It may also be interesting to 
explore how modification of the SAGA for multi-objective 
optimisation could be used to fine-tune the regularization 
parameter. 
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