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Abstract 

This paper deals with the problem of reconstruction 
of nonlinearities in a certain class of nonlinear systems 
of composite structure from their input-output obser- 

vations when a prior information about the system is 
poor, t,hus excluding the standard parametric approach 
to the problem. The multiresolution idea, being the 
fundamental concept of modern wavelet theory, is ad- 
opted and is applied to construct nonparametric iden- 
tification techniques of nonlinear characteristics. The 

pointwise convergence properties of the proposed iden- 
tification algorithms are established. 

1 INTRODUCTION 

A large class of physical systems in practice are nonline- 
ar or reveal nonlinear behavior if they are considered 
over a broad operating range. Hence the commonly 
used linearity assumption can be regarded only as a 
first-order approximation to the observed process. Sy- 
stem identification is the problem of complete deter- 

mination of a system description (mathematical mo- 
del) from an analysis of its input and output data. A 
large class of techniques exist for identification of li- 
near models. Much less attention, however, has been 
paid to nonlinear system identification, mostly becau- 
se their analysis is generally harder and because the 
range of nonlinear model structures and behaviors is 
much broader than the range of linear model struc- 
tures and behaviors. There is no universal approach 
to identification of nonlinear systems, and existing so- 
lutions depend strongly on a prior knowledge of the 
system structure, see [l], [2], [3], [8] for some techni- 
ques for nonlinear system identification. In general, 
the causal nonlinear (discrete time) system transforms 
the input data { Xt, t 5 n} into the output signal Yn at 
the time n. This transformation can be approximated 
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in various ways and an early approach relies on Vol- 
terra and Wiener expansions. These representations 
lead, however, to very complicated identification algo- 
rithms since multidimensional Volterra/Wiener kernels 
must be evaluated, requiring often an extremely large 

input-output data set. An alternative strategy is based 
on the assumption that the system structure is to some 
extent known. This yields the concept of block-oriented 

models, i.e., models consisting of linear dynamic subsy- 
stems and static nonlinear elements connected together 
in a certain composite structure. Signals interconnec- 
ting the subsystems are not accessible for measure- 

ments making the identification problem not reduci- 
ble to standard situations, i.e., identification of linear 
dynamic systems and recovering memoryless nonlinea- 
rities. A class of cascade/parallel models is a popular 
type of block-oriented structures, i.e., when linear dy- 

namic subsystems are in a tandem/parallel connection 
with a static element. Examples of such models include 

cascade Hammerstein, Wiener and sandwich structu- 
res and their parallel counterparts, [l], [2], [3]: [6], [7], 
[lo]. The popularity of these connections stem not on- 

ly from their relative simplicity (allowing us to design 
a constructive identification algorithms) but surprisin- 

gly from their ability to approximate closely systems 
which are not necessarily of this form. This is parti- 
cularly the case if one allows in the cascade/parallel 
models a general class of nonlinear characteristics not 
being able to be parametrized and smooth, e.g., not 
being just a polynomial of a finite order. We refer to 
[l], [3] for parametric identification techniques of the 
cascade/parallel block-oriented models with polynomi- 
al nonlinearities. The parametric restriction is oft.en 
too rigid, i.e., if one chooses a parametric family that is 
not appropriate form then there is a danger of reaching 
incorrect conclusions in the system identification. In 
[6], [7], [lo] the nonparametric approach to identifica- 
tion of the cascade/parallel block-oriented models has 
been proposed. The aim of nonparametric methods is 
to relax assumptions on the form of an underlying non- 



linear characteristic, and to let the training data decide 
which characteristic fits them best. These approaches 
are powerful in exploring fine details in the nonlinear 
characteristics. In this paper we consider the nonpara- 

metric approach to the identification of a broad class of 
nonlinear composite models which includes most pre- 
viously defined connections. We are mostly interested 
in recovering a nonlinearity which is embedded in a 

block oriented structure containing dynamic linear sub- 
systems and other “nuisance” nonlinearities. Our iden- 

tification approach combines the concept of regression 
analysis and the theory of orthogonal bases origina- 
ting from multiresolution and wavelet approximations 
of square integrable functions. This theory provides 
elegant techniques for representing the levels of details 

of the approximated function and consequently gives 
better rest&s than other approximation methods, see 

[41, [51, PI, P111 PI f or a full account of the theory and 
applications of this subject. 

2 NONLINEAR COMPOSITE 
SYSTEMS 

A class of nonlinear composite systems examined in 
this paper is described by the following equation: 
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where (X,,,Y,) is the input- output pair, ,u(.) repres- 
ents the unknown system nonlinearity, {&} is the sy- 
stem “noise” process characterizing the system history 

and {Ed} is the measurement noise. The system noi- 
se process {&} has an infinite convolution representa- 
tion with the weight sequence {sj} and the transfor- 
med input sequence {Xj (Xn-j)}. It is important to 
note that the nonlinear functions {Xj(z)} need not be 
known. The following assumptions concerning the mo- 
del in (2.1) are used in the paper: 

Assumption 1: The inputs signals {Xi, X2,. . .} form 
a sequence of independent and identically distributed 

random variables which are independent of {Ed}. The 
probability density f(.) of {Xl, Xz, . . .} is unknown and 
satisfies the following restrictions: 
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for all x E R and some unknown r]. 

Assumption 2: The parameters characterizing the 
system noise process {Ed} satisfy the following condi- 
tions: 

EXj(X)=O, j=1,2,... (4 

j=l 

5 IsjllXj(l)l < 00, for almost z E R (6) 
j=l 

2 2 lSj%+j lE{IXjCXJAt+j (x)0 < O” t7) 
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Assumption 3: The nonlinear characteristic p(.) is a 
measurable function satisfying the following conditions: 

Ep2(X) < co (8) 

(9) 

Assumption 4: The measurement noise {E,,} is uncor- 
related and such that: 

EE, = 0, varEn < 00 (10) 

The restriction (Al.l) is required since we use the 

&(R) multiresolution decomposition of f(x). The con- 
dition (A1.2) says that we consider the estimation pro- 
blem in such points on R where the input density is 

high, i.e., where f(x) is strictly bounded away from 
zero. The assumptions (A2.1) and (A2.2) are necessa- 
ry for {&} to be the second order covariance statio- 
nary stochastic process. This along with Assumption 
(A3.1) and Assumption 4 makes the output process 

{Y,,} well defined, i.e., it is also a second order stocha- 
stic process. It is worth noting that {Y,} is not st.rict- 
ly stationary process. The conditions (A2.3), (A2.4), 
(A3.2) put some restrictions on the system dynamics 
and they are required for the convergence property of 
our identification procedure for recovering p(.). Let 
us note that (A2.3) is meant in the Lebesque measu- 
re sense, i.e., it holds at all points 2 E R, except sets 

with zero Lebesque measure. In particular (A2.3) is 
true at all points where {Xj (x) , j = 1,2, . , .} are con- 
tinuous functions. Surprisingly there is a large class 
of block-oriented nonlinear models which fall into the 

description given in (2.1). This includes, e.g., the follo- 
wing popular connections: memoryless system! casca- 
de IIammerstein system, parallel system, parallel-series 
structures, cascade Wiener system. 



3 IDENTIFICATION 
ALGORITHMS 

It is a fundamental fact for our paper to observe that 

E {K I-L = x} = P(X), 
i.e., the system nonlinearity is equal to the standard 
regression function. Thus by estimating the regressi- 
on we can recover the non-linearity ,u(x). Due to this 

fundamental property we can treat ,u(x) as a standard 
regression function of Y, on X, = x. In order to con- 
struct an estimate of the regression function let us first 

observe that p(x) = g(x)/f(x), where g(x) = ,u(x) f(x) 
for every x where the assumption (A1.2) holds. Owing 
to the assumptions in (Al.l), (A3.2) we can approxi- 

mate g(x) and f(x) by their projections on the nth 
multiresolution subspace of Lz (R) as follows: 

&n(x) = &nkhnk(x) 

kEZ 

fm(x) = ~hnkdhk(d 

kEZ 

where one can easily observe that 

J 
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and 

b mk = 
s 

O” hnk(x)f(x) dx = E{hnk(Xn)) 
-co 

Here {&k(X), k E 2) is the orthonormal basis for the 

mfh resolution subspace. Empirical counterparts for 
g,,,(x) and fm (x) given above can be easily constructed 
first by replacing the expected values in the formulas 
for &,,k and b,k by their natural estimates 

C&k = n -1 
2 x&nk(Xi) 

i=l 
n 

i),k = n-l c ‘#hk(Xi) 

i=l 

and next by cutting off the number of terms to some 

finite value referred to in this paper as a truncation 
value q. All these things yield the following estimator 
of p(x) utilizing 2q + 1 terms at the resolution level m: 

c &nkhk(x) 

An(x) = lkF gmk4mk(x) 

IklIq 

It is worth noting that the truncation value should be 
sufficiently large to have ,&,, (2) well defined. The re- 
solution level m plays the most important role in both 
asymptotic and finite sample size performance of the 
estimators. In fact it is required thatthe resolution le- 
vel m must be chosen as a function of the sample size 
n, i.e., m = m(n) in such a way that 

m(n) + 03 

and 

ye) 
-+oa 

n 

as n + 00. Then under Assumptions l-4 the following 
convergence property can be established: 

fim(n)(4 + P(X) 

as n + co in probability for almost all x E R. 

This property holds for all input densities f(.) and all 
measurable nonlinearities p( .) which satisfy Assumpti- 

on 1 and Assumption (A3.2). No continuity conditions 
for the characteristic ,u(.) are required. Under further 
smoothness conditions on p( .) and f(.) we demonstrate 
that m(n) can be specified as m(n) = ilog:, yiel- 

ding the rate 0 (ns1i3), in probability. The latter re- 
sult holds for the first order multiresolution basis as, 
e.g. the Haar system. A faster rate of convergence 
can be obtained with the higher order multiresolution 
orthonormal systems. 
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