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ABSTRACT 

Recent success in wavelet image coding is mainly at- 
tributed to recognition of the importance of data orga- 
nization and representation. Several very competitive 
wavelet coders have been developed, namely, Shapiro’s 
embedded zerotree wavelets (EZW), Servetto et aI.‘s 

morphological representation of wavelet data (MRWD), 
and Said and Pearlman’s set partitioning in hierarchi- 

cal trees (SPIHT). In this paper, we develop a novel 
wavelet image coder called significance-linked connected 

component analysis (SLCCA) of wavelet coefficients 
that exploits both within-subband clustering of signifi- 
cant coefficients and cross-subband dependency in sig- 
nificant fields. Extensive computer experiments show 
that the proposed SLCCA outperforms all three afore- 
mentioned wavelet coders. For example, for the “Bar- 

bara” image, at 0.50 bpp SLCCA outperforms EZW 
and SPIHT by 1.75 dB and 0.89 dB in PSNR, rcspec- 
tively. It is also observed that SLCCA works extremely 
well for images with large texture regions. For eight 
typical 256 x 256 grayscale texture images compressed 
at 0.40 bpp, SLCCA outperforms SPIHT by 0.32 dB- 
0.70 dB. This outstanding performance is achieved with- 

out any optimal bit allocation procedure. Thus both 
the encoding and decoding procedures are fast. 

1. INTRODUCTION 

Conventional wavelet or subband image coders [l, 21 
mainly exploit the energy compaction property of sub- 
band decomposition by using optimal bit allocation 
strategies. The drawback is apparent in that all zero- 

valued wavelet coefficients, which convey little informa- 
tion, must be represented and encoded, biting away a 
significant portion of the bit budget. Although this 
type of wavelet coders provide superior visual qual- 
ity by eliminating the blocking effect in comparison to 
block-based image coders such as JPEG, their objective 
performance measured by PSNR increases only moder- 
ately. 

Two important issues in wavelet coding arc: 

(a) What is the statistical distribution of a wavelet- 
transformed image within or across subbands? 

(b) How to take advantage of the statistical proper- 
ties of a wavelet-transformed image? 

Empirically, it has been observed that a wavelet- 
transformed image has the following statistical proper- 
ties: 

1. spatial-frequency localization, 
2. energy compaction, 
3. within-subband clustering of significant coefficients, 
4. cross-subband similarity, 
5. decaying. of magnitude of wavelet coefficients 

across subbands. 

In recent years, we have seen an impressive advance 

in wavelet or subband image coding. The success was 
mainly attributed to the innovative strategies for data 
organization and representation of wavelet coefficients 
which exploit not only the energy compaction but also 
other important statistical properties of wavelet trans- 

form. There were three such wavelet image coders pub- 
lished, namely, Shapiro’s embedded zerotree wavelet 

coder (EZW) [3], S ervetto et al.‘s morphological repre- 
sentation of wavelet data (MRWD) [4], and Said and 
Pearlman’s set partitioning in hierarchical trees (SPIHT) 
[5]. They are all based on empirical observat,ions of the 
statistical distributions of wavelet-transformed images 
in one aspect or another. Both EZW and SPIHT ex- 
ploit cross-subband dependency of insignificant coeffi- 
cients while MRWD does within subband clustering of 
significant coefficients. The PSNR of reconstructed im- 
ages using such data organization strategies was raised 
by l-3 dB over block-based transform coders. 

In this paper, we propose a novel and more efficient 
data representat.ion strategy for wavelet image coding 
termed significance-linked connected component analy- 

sis (SLCCA). SLCCA strengthens MRWD by exploit- 
ing both within-subband clustering of significant coeffi- 
cients and cross-subband dependency among significant 



fields. The cross-subband dependency is effectively ex- 
ploited by using the so-called significance-link between 
a parent cluster and a child cluster. 

The rest of the paper is organized as follows. Our 
wavelet image coding algorithm, SLCCA, is presented 
in next section. In Section 3, the performance of SLCCA 
is evaluated against three other wavelet coders, i.e., 

EZW, MRWD, and SPIHT. The last sect.ion concludes 
the paper. 

2. SIGNIFICANCE-LINKED CONNECTED 
COMPONENT ANALYSIS 

2.1. Formation of Connected Components 
within Subbands 

Since a rather large portion of wavelet field appears in- 
significant and significant coefficients within subbands 
tend to be more clustered (Fig. 2), organizing and rep 
resenting each subband as irregular shaped clusters of 
significant coefficients provides an efficient way for en- 

coding. Clusters are progressively constructed by using 
conditioned dilation, resulting in an effective segmen- 
tation of the within-subband significant field. The idea 
was sketched in [4]. In the following, we will focus our 

discussion on the selection of structuring elements. 
Suppose A is a binary image, B a binary structuring 

element, and A4 C A a marker. Then, the conditioned 

dilation is defined as 

D1(M, A) = (M $ B) n A, 

where $ denotes the morphological dilation and n the 
intersection. Let 

D”(M,A) = D’(D”+4,A),A). 

Then D” (M, A) defines a cluster in A. For a digital 
image, the cluster is formed in finite number of itera- 
tions when D” (M, A) = D”-‘(M, A). 

In the case of clustering in wavelet field, the binary 
image A represents the significance map, i.e., 

1, 

4x, ~1 = 
{, 

if the wavelet coefficient at location 
o [x,y] is significant, 

otherwise. 

The marker M C A represents the seed of a cluster. 
Traditionally, a connected component is defined 

based on one of the three types of connectivity: 4- 
connected, %connected, and 6-connected, each requir- 
ing geometric adjacency of two neighboring pixels. Since 

the significant coefficients in wavelet field are only loosely 
clustered, the conventional definition of connected com- 
ponent will produce too many components, affecting 
the coding efficiency. Thus we may use symmetric 

structuring elements with a size larger than 3 x 3 square. 
But we still call the segments generated by conditioned 
dilation connected components even if they are not geo- 
metrically connected. Some structuring elements tested 
in our experiments are shown in Fig. 1. The ones in 
Figs. la and lb generate 4- and 8-connectivity, respec- 
tively. The structuring elements in Figs. lc and Id 

may not preserve geometric connectivity but perform 
better than the former two in terms of coding efficiency. 
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Figure 1: Struct.uring elements used in conditioned di- 
lation. 

To effectively delineate a cluster of significant co- 
efficients, all zero coefficients within the neighborhood 

B of each significant coefficient in the cluster need to 
be coded as the boundary of the cluster. By increas- 
ing the size of the structuring element, the number of 
connected components decreases. On the other hand, 
a larger structuring element results in more boundary 
zero coefficients. The optimal choice of the size of the 

structuring element is determined by the cost of encod- 
ing boundary zeros versus that of encoding the posi- 
tional information of connected components. Since the 
significance-link largely reduces the positioning cost,, 
relatively smaller structuring elements can be selected 

for connected component analysis. 

Since extremely small clusters usually do not pro- 
duce discernible visual effects, and those clusters ren- 
der a higher insignificant-to-significant coefficient ra- 
tio than large clusters, they are eliminated to avoid 

relatively more expensive coding cost. The connected 
component analysis is illustrated in Fig. 2. The sig- 
nificance map obtained by quantizing all wavelet co- 
efficients with a uniform scalar quantizer of step size 
Q = 11 is shown in Fig. 2a. The 22748 significant 

wavelet coefficients form 1654 clusters using the struc- 
turing element shown in Fig. lc. After removing con- 
nected components having only one significant coeffi- 
cient, the number of clusters is reduced to 689. The 
final encoded significance map is shown in Fig. 2b. It 



is clear that only a small fraction of zero coefficients 
are encoded. 

(4 (b) 

Figure 2: Significance map for six-scale wavelet decom- 
position, q = 11. (a) Significance map after quantiza- 
tion: White pixels denote insignificant coefficients and 

black pixels significant coefficients. (b) The encoded 
significance map. White pixels denote coefficients that 
are not encoded. Black and gray pixels denote encoded 
significant and insignificant wavelet coefficients, respec- 

tively. 

2.2. Significance-Link in Wavelet Pyramid 

The cross-subband similarity among insignificant coef- 

ficients in wavelet pyramid has been exploited in EZW 
and SPIHT that greatly improves the coding efficiency. 
On the other hand, it is found that the spatial similar- 

ity in wavelet pyramid is not strictly satisfied, i.e., an 
insignificant parent does not warrant all four children 
insignificant. The “isolated zero” symbol used in EZW 
indicates the failure of such a dependency. The simi- 

larity described by zerotree in EZW and the similar- 
ity described by insignificant all second generation de- 
scendents in SPIHT are more of a reality when a large 
threshold is used. As was stated in [3] and [6], when the 

threshold decreases (for embedding) to a certain point, 
the tree structure or set-partitioned-tree structure are 
no longer efficient. 

In the proposed algorithm, as opposed to EZW and 
SPIHT, we attempt to exploit the spatial similarity 
among significant coefficients. However, we do not seek 
a very strong parent-child dependency for each and ev- 
ery significant coefficient. Instead, we t.ry to predict 

the existence of clusters at finer scales. Statistically, 
the magnitudes of wavelet coefficients decay from a par- 

ent to its children. It implies that in a cluster formed 

within a fine subband, there likely exists a significant 
child whose parent at the coarser subband is also sig- 
nificant. In other words, a significant child can likely be 
traced back to its parent through this significance link- 

age. It is crucial to note that this significance linkage 

relies on a much looser spatial similarity. 
Formally, two connected components or clusters are 

called significance-linked if the significant parent be- 
longs to one component, and at least one of its chil- 
dren is significant and lies in another component (Fig. 

3). If the positional information of the significant par- 
ent in the first component is available, the positional 
information for the second component can be inferred 
through marking the parent as having a significance- 
link. Since there are generally many significant coeffi- 
cients in connected components, the likelihood of find- 
ing significance-link between two components is fairly 
high. Apparently, marking the significance-link costs 
much less than directly encoding the position, and a 
significant saving on encoding cluster positions is thus 
achieved. Among all, using significance-link makes a 

major difference between SLCCA and MRWD. 

Figure 3: Illustration of significance-link. Nonzero val- 
ues denote significant coefficients. 

2.3. Bit-Plane Organizing and Adaptive Arith- 
metic Coding 

As in most image compression algorithms, the last step 
of SLCCA involves entropy coding for which adaptive 
arithmetic coding [7] is employed. Entropy coding tcch- 
niques attempt to exploit the source statistics in order 

to generate an average codeword length closer to the 
source entropy. In contrast to a fixed model arithmetic 
coder, which works well for a stationary Markov source, 
the adaptive arithmetic coder updates the conditional 
probability estimation every time when the coder vis- 

its a particular context. For the data stream gener- 
ated by a nonstationary source such as natural images, 
the conditional probabilities or local probability dis- 
tributions may vary substantially from one section to 
another. The knowledge of the local probability distri- 
butions acquired by an adaptive model is more robust 
than the global estimates and follows the local statis- 
tical variation well. In comparison to the fixed model 
arithmetic coder, the adaptive arithmetic coder is thus 
able to achieve higher compression. In order to exploit 



the full strength of an adaptive arithmetic coder, it 
is preferable t.0 organize outcomes of a nonstationary 

Markov source into such a stream that each local prob 
ability distribution is in favor of one source symbol. 

This is the basic idea behind the well known lossless 
bit-plane coding, in which an original image is divided 
into bit-planes with each bit-plane being encoded sepa- 
rately. Since more significant bit-planes generally con- 

tain large uniform areas, the entropy coding techniques 
can be more efficient. 

This idea is employed by SLCCA to encode the 
magnitude of significant coefficients in each subband. 
The magnitude of each significant coefficient is con- 
verted into a binary representation with a fixed length 
determined by the maximum magnitude in the sub- 

band. Generally, most magnitudes in the subband are 
smaller than their maximum, implying that more sig- 

nificant bit-planes would contain a lot more O’s than 
1’s. Accordingly, the adaptive arithmetic coder would 

generate more accurate local probability distributions 
in which the conditional probabilities for “0” symbols 
are closer to one for more significant bit-planes. The 

context used to define conditional probability models 
at each significant coefficient is related to the signifi- 
cance status of its eight neighbors and parent. 

The bit-plane encoding idea is also used in both 
EZW and SPIHT but in a different manner. In EZW, 
for instance, the idea is realized through progressive 
transmission of magnitudes, with the “0” bits before 

the first “1” bit being encoded as either “zerotree” or 
“isolated zero.” 

3. PERFORMANCE EVALUATION 

Thk SLCCA is evaluated on several natural 512 x 512 
grayscale images. The performance is compared with 
the best wavelet coders EZW, MRWD, and SPIHT. 
Each original image is decomposed into a six-scale sub- 
band pyramid using the lo/18 filters obtained from 
ftp.cs.dartmouth.edu. There is no optimal bit alloca- 
tion carried out in SLCCA. Instead, all wavelet coeffi- 
cients are quantized with the same uniform scalar quan- 
tizer. All the reported bit rates are computed from the 
actual file sizes. 

Table 1 shows the comparison among four wavelet 

coders at different bit rates. Other results are available 
at our web site http:// www.cecs.missouri.edu/~dcmms. 

For “Lena,” SLCCA consistently outperforms EZW, 
MRWD, and SPTHT as well. Compared to EZW! 
SLCCA gains 1.07 dB in PSNR on average. When 
compared to MRWD, SLCCA is superior by 0.27-1.07 
dB. Compared to SPIHT, SLCCA gains 0.18 dB. For 
“Barbara,” on average, SLCCA is superior to EZW by 

1.67 dB, and to SPIHT by 0.62 dB. 

Image Rate [bpp] 0.125 0.25 0.50 1.00 
Algorithm 

EZW 30.23 33.17 36.28 39.55 
Lena MRWD - - 36.60 40.17 

SPIHT 31.09 34.11 37.21 40.41 
SLCCA 31.38 34.33 37.38 40.44 

EZW 24.03 26.77 30.53 35.14 
Barbara SPIHT 24.86 27.58 31.39 36.41 

I 1 SLCCA 1 25.45 1 28.43 1 32.28 1 37.15 1 

Table 1: Performance comparison (PSNR [dB]) of dif- 
ferent wavelet coding algorithms. 

It appears that SLCCA performs significantly bet- 

ter than SPIHT for images which are rich in texture 
such as “Barbara.” For images which are relatively 
smooth (“Lena”), the performance between SLCCA 
and SPIHT gets closer. To further verify the above 
observation, we compare the performance of SLCCA 
and SPIHT on eight typical 256 x 256 grayscale texture 
images shown in Fig. 4. The results at 0.4 bpp are sum- 
marized in Table 2 indicating that SLCCA constantly 

outperforms SPIHT by 0.32-0.70 dB. An explanation is 
as follows. When textured images are encoded, wavelet 
transform is unlikely to yield many large zero regions 
for lack of homogeneous regions. Thus, the advantage 
of using an insignificant tree as in EZW, or an in- 
significant part-of-tree structure as in SPIHT is weak- 

ened. On the other hand, SLCCA uses significance- 
based clustering and significance-based between-cluster 

linkage, which are not affected by the existence of tex- 
tures. 

“water” 29.76 29.19 

‘(wool” 26.40 25.70 
1 I I I 

Table 2: Performance comparison (PSNR [dB]) of 
SPIHT and SLCCA on texture images at 0.4 bpp. 

Finally, we apply SLCCA to fingerprint image com- 

pression, which represents a very important issue de- 
manding the best solution. The FBI has developed a 
fingerprint image compression algorithm called wavelet 

scalar quantization (WSQ) [8]. At 0.444 bpp or 18:l 
compression, SLCCA yields a PSNR of 35.81 dB as op- 
posed to WSQ’s 34.43 dB, corresponding to a 1.38 dB 



Figure 4: 256 x 256 texture images. From left to right, 
top to bottom: “fingerprint,” “sweater,” “grass,” “pig 

skin, ” “raffia,” “sand, ” “water” and “wool.” 

improvement. The original and reconstructed images 

from SLCCA at 0.444 bpp are shown in Fig. 5. Note 
that there is almost no loss in visual quality. 

(4 (b) 

Figure 5: “Fingerprint” images. (a) Original image. 
(b) Reconstructed image by SLCCA at 0.444 bpp, 
PSNR=35.57 dB. 

4. CONCLUSIONS 

A new image coding algorithm termed significance-linked 
connected component analysis is present,ed in this pa- 
per. The algorithm takes advantage of two properties 
of the wavelet decomposition: the within-subband clus- 

tering of significant coefficients and the cross-subband 
dependency in significant fields. The significance-link 
is employed to represent the positional information for 

clusters at finer scales, which greatly reduces the posi- 
tional information overhead. The magnitudes of signifi- 
cant coefficients are coded in the bit-plane order so that 
the local statist.ic in t,he bit. stream matches the prob- 
ability model in adaptive arithmetic coding to achieve 
further saving in bit rate. Extensive computer exper- 

iments justify that in most cases, SLCCA surpasses 
the state-of-the-art image coding algorithms reported 
in the literature. As no optimization is involved, both 
the encoding and decoding procedures arc remarkably 

fast. 
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