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ABSTRACT 

Speckle noise is one characteristic of Synthetic Aper- 
ture Radar (SAR) images. The primary goal of speckle 
smoothing of SAR images is to reduce the speckle 
noise without sacrificing information content. Various 
speckle filters have been devised to smooth speckle in 
the spatial domain. In this paper, we perform speckle 
reduction in the wavelet domain. A hierarchical cor- 
relation is defined which takes into account both the 
inter- and intra-band correlation among wavelet coef- 
ficients. According to this definition, the correlation 

values at edge positions are larger than those for non- 
edge positions. We use this correlation map to dis- 
tinguish edge coefficients from noise coefficients and 
thus perform selective soft-thresholding on the wavelet 
coefficients. The proposed method is applied to air- 
borne SAR images and the results are compared with 
Donoho’s original soft-thresholding and the well-known 
Lee multiplicative speckle filter. Test results show that 

this method can substantially smooth noise while pre- 
serving major edge structures in images. 

1. INTRODUCTION 

Synthetic Aperture Radars (SAR) are active imaging 

systems widely used in remote sensing applications. 
SAR systems are characterized by their high image 
resolution and all-weather operating ability, but SAR 
images also suffer from the notorious speckle noise, a 
chaotic phenomenon that results from coherent imag- 
ing [l]. Speckle noise can obscure scene content and 
strongly reduce the ability for object recognition. Thus 
speckle noise reduction has long been a central problem 
in SAR image processing. 
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Various speckle smoothing algorithms have been 
proposed which adapt the parameters of filters to the 
local noise statistics in the spatial domain. The Lee 
multiplicative speckle filter is perhaps the most fa- 
mous among these[2]. This filter can effectively reduce 
speckle in homogeneous areas, but does not perform as 
well in the edge regions. The selection of the processing 
window size in the Lee filter is a compromise between 
noise smoothing and edge preserving; a large window 
size results in less prominent noise in edge areas, but 
the edges are somewhat blurred. 

In this paper, we present a new speckle noise re- 
duction algorithm performed in the wavelet transform 
domain. Wavelet domain soft-thresholding, originally 
proposed by Donoho[5], has been found to be an ef- 
fective method for noise reduction. In the original 

algorithm (called “Donoho’s overall soft-thresholding” 
in this paper), all the wavelet coefficients are soft- 
threshold processed. While speckle noise is reduced by 
this method, the subtle edges are also destroyed by this 
indiscriminate processing. The algorithm proposed in 
this paper attempts to overcome this problem by per- 
forming selective wavelet coefficient soft-thresholding, 

thus better preserving edge structures. 

2. REVIEW OF THE WAVELET 
TRANSFORM AND 

SOFT-THRESHOLDING 

The essential concept of the wavelet transform of a 
function is to represent the function as a superposition 
of wavelet basis functions. The wavelet basis functions 
are generated from a single mother wavelet function 
G(t) by dilations and translations. A discrete orthog- 
onal wavelet basis would consist of the following func- 
tions: 

&$(t) = 2”‘2. 7442-Y -n) (1) 



where m and n are indexing integers, and t is a vari- 

able denoting time or space. In addition to 3(t), there 
is usually another function qS(t) called the scaling func- 
tion which complements $(t) in representing a signal 
at the same scale. The discrete wavelet transform can 
be implemented by filter banks. Suppose h(n) and 
g(n) are filters associated with a discrete orthogonal 
wavelet basis c$(t) and G(t), respectively. A sampled 
signal so(n) can be decomposed as: 

sl(n) = Ch(2n-ff)so(k), cl(n) = C9@n-G0(k) 
k k 

(2) 
This operation can be repeated on the signal s1 (n) and 
so on up to scale j. In this case the signal set cl U c2 U 
CQU... U ci U cj U sj provides a lossless representation of 

so(n). A more comprehensive discussion of the wavelet 
transform may be found in [3] or [4]. 

The attraction of wavelet transform in image pro- 

cessing lies with two facts. First, a wavelet transform 
decomposes an image into a multiresolution represen- 
tation. Each subimage can be handled with different 
processing parameters. Second, a wavelet transform 
possess good spatial-frequency resolution, thus it can 
track rapid changes in image content effectively. 

Noise filtering is one application of wavelet do- 

main image processing. Donoho [5] proposed a wavelet 
shrinkage procedure for the optimum recovery of a sig- 
nal from a noisy data set. Let yi = xi + ni, i = 

0, . . . ) N - 1, where xi is the true signal, and ni is white 

Gaussian noise. Let f be the estimate of x. The goal 
is to optimize the mean-square error 

subject to the side condition that with high probability, 
2 is at least as smooth as x. A wavelet transform is 

applied to the data set and the noise standard deviation 
0 of the coefficients is estimated. A universal threshold 
can be calculated by 

t, = l/~a/dv (4) 

and soft-thresholding is applied to each wavelet coeffi- 
cient c,(n) to obtain the new coefficient i&(n) by: 

L(n) = wn(cm(n))(lcmb>l - bd+ (5) 

where (x)+ takes the value x for positive z and zero 
otherwise. The de-noised signal & can then be ob- 
tained by the inverse wavelet transform. 

Applications of the soft-thresholding method for 
noise reduction has been reported by [6, 71 with promis- 
ing results. However, the resulting images usually have 

a blurred and dimmed appearance because the edge 
pixels as well as noisy pixels are equally smoothed. 
In order to retain both the large structures and the 
subtle details, we have refined Donoho’s overall soft- 
thresholding approach. 

3. THE SELECTIVE WAVELET 
COEFFICIENT SOFT-THRESHOLDING 

METHOD 

To overcome the problem of Donoho’s overall soft- 
thresholding method, we need to identify edge pixels 

in the wavelet domain and protect them from soft- 
thresholding. We know wavelet coefficients with larger 
values usually indicate the positions of rapid changes 
(i.e., edges) in an image, and small coefficients usually 
correspond to detail information. While this is always 
the case for clean images, wavelet coefficients for noisy 
images are inevitably contaminated by noise and can 
hardly be used to identify edges directly. Thus, alter- 
native methods should be investigated. 

In this work, we adopt the common multiplicative 
model of speckle noise. Let y(i,j) = z(i; j)n(i, j), 
where y(i, j) is the (i, j)th intensity or amplitude of 
a SAR image pixel, x(i, j) is the noise-free quantity 
at (i, j) and n(i, j) is the speckle noise characterized 
by a distribution with a unit mean (E[n] = 1) and a 

standard deviation (TV. We define 

~7~ can be used as a measure of speckle strength. The 
multiplicative nature of the speckle noise has been ver- 
ified by scatter plots of sample standard deviat.ion ver- 
sus sample mean produced in many homogeneous areas 
of SAR images [2]. For example, in featureless regions 
of a four-look SAR image, oV is approximately 0.26. 

A logarithmic transform is employed to convert the 

multiplicative speckle noise into additive noise. Since 
the wavelet transform is a linear operation, it will not 
change the log-transformed noise statistics. Thus, we 

can expect the noise in the logarithmic preprocessed 
images to be manifest as additive noise. 

Although the orthogonal wavelet transform does 
a good job in decorrelating an image, the resulting 
wavelet coefficients are not totally uncorrelated. As 
proved by Dijkerman and Mazumdar, the correlation 
between orthogonal wavelet coefficients decreases expo- 
nentially quickly across scales and hyperbolically along 

time (space) [8]. Therefore, we can make use of this 
short term correlation to select informative image fea- 
tures from the noise which, after the orthogonal trans- 

form remains uncorrelated. 
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Figure 1: Illustration of wavelet quadtrees of an 3-level 

wavelet decomposition. 

We note that while large structures can be found in 
many scales, small image details can only be revealed in 
several fine scales. Thus we calculate inter-band cor- 
relation involving only two adjacent scales. Besides, 
when an orthogonal wavelet transform is adopted, hor- 
izontal, vertical and diagonal subimages will be gener- 
ated which are quite different in their edge extraction 

abilities, i.e., oriented edges can only be visible in cer- 
tain subimages. This suggest that subimages of differ- 

ent orientations should be treated separately. There- 
fore, in the following context, the same procedure will 
be applied to the horizontal (H), vertical(V) and diag- 
onal (D) subimages separately. 

From the above discussions, we can introduce the 
concept of hierarchical correlation which takes into ac- 
count both the near neighbor intra-band correlation 
and the adjacent inter-band correlation along partial 
quadtrees(Fig.1) which is a group of five wavelet coeffi- 

cients corresponding to the same spatial location. For 
any two levels in the wavelet decomposition, the hier- 
archical correlation is defined as 

correlation = d&T&G (7) 

max(dm, 4-i) H - orient 
max(Jm, &FG) V - orient (8) 
max(Jm, dm) D - orient 

where ri is one coefficient in the coarser scale and 

tl , t2, t3 and t4 are four coefficients in the next finer 
scale. Notice that the intra-band correlation is com- 

puted differently according to the orientation of the 
subimages involved. Oriented edges will generate larger 
correlation values and will be detected by this defini- 
tion. A correlation map whose size is a quarter of the 
original image is then obtained because coefficients in 
the finest scale have no descendants. Large coefficients 
in this map indicate the position of edges in the origi- 
nal image, and zero coefficients correspond to smooth 
areas. The left-top part of the correlation map which 
corresponds to the lowpass subimage in the wavelet de- 
composition will not be computed since we consider the 

coarsest resolution subimages are clean enough and as 
such, could be left unprocessed. 

Our correlation definition allows fine structures 

which do not appear as local maxima to be revealed 
in the correlation map. This correlation map can then 
be used as an edge position indicator in the wavelet 
domain. Quadtrees which are not selected as edges 
for certain correlation thresholds will be smoothed as 

noise. The algorithm is designed as an iterative one 
starting with a relatively small correlation threshold 
which is increased on each iteration to gradually elimi- 

nate noise (Fig. 2). The complete processing procedure 
is given as follows: 

1. Perform logarithmic operation on the original image to 
convert multiplicative noise into additive noise. 

2. Apply orthogonal wavelet transform with maximum pos- 
sible decomposition level. 

3. (a) Compute correlation map. 

(b) Perform selective soft-thresholding on non-edge 
quadtrees. 

(c) Stop if a stopping conditions is reached, else increase 
the threshold for edge detection and return to 3a. 

4. Apply inverse wavelet transform. 

5. Perform exponential operation. 

Two thresholds are employed in the above algo- 
rithm. One is that used to determine edges from the 
correlation map. Another threshold is used for the 

soft-thresholding. From our experience, the univer- 
sal threshold obtained from Donoho’s formula tends to 

oversmooth images. Currently there is no other well 
defined criterion for threshold selection. In this algo- 
rithm, we use the variance of the finest scale diagonal 
oriented subimage as this threshold, and decrease it by 
a small value (e.g., 0.5) when it is used to process larger 
scale subimages. 

There are two ways to stop this algorithm. One is to 

specify the number of iteration times. We have found 
that 10 - 15 iterations with a threshold increment of 
0.5 can yield good noise reduction results for most of 
the test images used in our research. Alternatively, the 
algorithm can be stopped when a certain percentage 
of the image pixels within an image are determined as 
edges. Thus this algorithm trades off preserving im- 
age details and reducing noise. These two conditions 
should be adjusted for different images according to 
image type and complexity. 

4. TEST RESULTS AND DISCUSSIONS 

Fig. 3 shows an original airborne SAR amplitude im- 
age(Fig. 3(a)) and three filtered images (Fig. 3(b)- 
(d)). Fig. 3(b) is produced by Donoho’s overall soft- 
thresholding with threshold=3. Fig. 3(c) shows the re- 
sult of the proposed selective soft-thresholding method 
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Figure 2: Correlation maps of a 4-level decomposed noisy image (a) after 2 iterations (b), 3 iterations (c) or 4 
iterations(d). Major edges are gradually made visible along with the elimination of noise. 

after 10 iterations and with a starting correlation 
threshold=l. We can see that the soft-thresholding 
technique can effectively reduce the speckle noise. 

However, Donoho’s overall approach tends to smooth 
both edge and noise pixels. The filtering result ob- 
tained from selective soft-thresholding has a much 
brighter appearance with enhanced edge sharpness, 
and with the thin edges well preserved. The smoothed 

image produced by the Lee multiplicative speckle filter 
is provided for comparison(Fig. 3(d)). Since this test 
image contains many fine structures, a small mask size 
(3x3) is chosen to prevent over-smoothing. While this 
filter works fairly well in homogeneous areas, substan- 
tial noise is left in the edge regions. 

Because there are no noise -free versions of the SAR 
images, we cannot use PSNR or other similar objective 
measures to evaluate the noise smoothing performance. 

Instead, we manually choose several small regions (11 
x 11) from the images which appear to be homoge- 
neous to evaluate the noise smoothing effect in these 

regions. The mean, variance and cr,, measures for two 
of these regions are shown in Table 1. In addition to 
these homogeneous regions, we also select two regions 
which contain edge activity and the measures are also 
shown in Table 1. For each smoothed image, we ex- 
pect small variance and (T, values in the flat regions 
and large variance and o, values in the edge regions. 
Again, we include those measures for the images ob- 
tained from the Lee filter for comparison. We see that 
for this and other test images not shown here, the pro- 
posed filter performs better overall than the Lee filter 

in both noise smoothing and edge preservation. 

We should note that although the proposed filter 
produces good results on the test images, it has some 
limitations. First, it is capable of detecting and en- 
hancing line features in the images, but it does not 
perform equally well on features with short duration 
such as point targets. Second, currently the proposed 
method stops after having finished a certain number 
of iterations. For images with many edge activities, we 

II areal(flat) II area2fflatj 
. I . , 

image mean var uv II mean I var I ua 
1 SDeckle II 14.45 I 4.28 1 0.2! 

‘Lee 

36 58.72 14.48 0.247 
13.88 1.61 0.116 57.76 4.12 0.071 

overall 12.08 1.62 0.134 52.80 5.43 0.103 

selective 12.93 1.09 0.084 53.87 3.05 0.057 

image 
area3(edge) I area4(edge) 

mean var uv mean var fJv 

Table 1: Quantitative measures for noise smoothing 
and edge preserving of industry image. 

perform fewer iterations to preserve image details while 

for relatively simple images, we can do more iterations. 
For images with spatially varying complexity, we have 

to trade off the noise smoothing and detail preserva- 
tion by using a moderate times of iterations. The issue 

of adapting iteration times to image statistics deserves 
further study. 

5. CONCLUSIONS 

In this paper, we have proposed a new wavelet do- 
main speckle noise reduction method. The edge pix- 

els are identified from the hierarchical correlation map 
by exploiting both the inter- and intra-band correla- 

tion among the wavelet coefficients; thus edge pixels 
are protected from soft-thresholding. Compared with 
Donoho’s overall soft-thresholding noise reduction ap- 
proach and the Lee multiplicative filter, the proposed 
method can achieve better smoothing of the speckle 
noise and preservation of the subtle but distinguishable 
features. 
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Figure 3: Comparison of speckle reduction results: (a) Original SAR image (4 - look); (b) Speckle reduction using 
Donoho’s overall soft-thresholding, threshold=3; (c) Speckle reduction using selective soft-thresholding, thresh- 

old=l, 10 iterations; (d) Speckle reduction using Lee Multiplicative filter, mask size=3 x 3. 
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