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ABSTRACT 

This work applies the Continuous Wavelet Transform 
(CWT) to Abrupt, Change (AC) det,ect.ion in zero- 
mean multiplicative noise. An AC signat,nre can be 
defined because of CWT translation invariance prop- 
erty. The problem is then signature detection in the 
timescale domain. A contrast criberion is defined as 
a second-order measure of performance. This contrast, 
depends on the first and second order moment,s of the 
multiplicative process CWT. An optimal wavelet max- 
imizing t,he contrast is derived for an ideal step in white 
multiplicative noise. In this fundamental case, the Sig- 
nal to Noise Ratios (SNR) in the time domain and 
in the time-scale domain are compared. A scale exists 
above which SNR is larger on t,he CWT maxima curve 
than in t,he time domain. An asymptotically optimal 
wavelet is derived for smoothed AC. 

1. INTRODUCTION AND PROBLEM 
FORMULATION 

Multiplicative noise models have been considered in 
many applications. These applicabions include image 
processing in syst,ems using coherent. radiation (radar, 
laser) [2] and random communication models (fading 
channels) [9]. F or object contour extraction or for seg- 
mentat,ion purpose! these applications require the de- 
tection and estimation of abrupt change (AC) in the 
observed process moments [I]. This paper applies the 
Cont,inuous Wavelet Transform (CWT) t.o AC detec- 
tion in zero-mean multiplicative noise. The detection 
algorithms are different whet.her the multiplicative noise 
is zero-mean or not. The CWT has been shown to be 
an effective tool for the AC detection problem when 
the noise is non-zero mean [3]. The optimal Neyman- 
Pearson detect,or and two subopt,imal detectors based 
on t,he time-scale signat,ure have been successfully stud- 
ied [4]. Unfortlmat.ely, t.hese algorit,hms fail when the 
noise is zero-mean. 

This paper proposes to use a non-linear preprocess- 
ing followed by a time-scale detector for the AC de- 
tection problem: when the mult,iplicative noise is zero- 
mean. The quadratic non-linearity has been chosen 
for simplicity. However, other non-linearities could be 
studied in a similar way. The detection problem ex- 
presses as a simple binary hypotheses t.esting: 

Under the null hypothesis Ho, the observed process 
y(t) is a white noise with variance (T:: 

?I@) = xc(t) 

Under the hypothesis HI, the observed process g(t) 
is modeled by: 

l/(t) = x(+(t) = z(t) 1 + Af 
[ (Gy 

= z(t) [I + Af,, (t)] 
t E ~,to~fl,A~O,ao>O 

where R is the observation interval. s(t) is a deter- 
ministic signal wit.h parameter vector e = (A,to,a~)~ 

(amplitude, instant, dilation). s(t) corresponds to a 
transition from 1 to l+A. f characterizes the transition 
shape. f is assumed positive, bounded and satisfies: 

f(t) = 0 fort 5 -1 

f(t) = 1 for t > 1 

Note that. s(t) t,ends to an ideal step with amplitude A 

at, position to when a() - 0. 
Section 2 analyzes the AC in the time-scale de 

main when noise is multiplicative. First and second or- 
der moment,s are derived under both hypotheses. The 
CWT translation invariance property allows a multi- 
plicat.ive AC signature t.o be defined. Section 3 pro- 
poses the complementary deflection as a contrast mea- 
sure in t,he time-scale domain. It measures wavelet 
abilit,y to separate the t.wo hypotheses. The comple- 
mentary deflection is equivalent to a Signal to Noise 



Ratio (SNR) in the time-scale domain, under hypoth- 
esis Hi. Comparison of the SNR in the time and 
timcscale domains displays the CWT capabilities for 
detection in the multiplicative context. The SNR in 
the time-scale domain increases with the scale on the 
CWT maxima curve, whereas it is constant in t.he time 
domain. This section derives an optimal wavclet max- 
imizing the SNR: for an ideal step on the CWT max- 

ima curve. The minimum scale for which t.he SNR is 
larger on this curve than in the time domain is then 
determined. This wavelet is shown to be asymptoti- 
cally optimal for any smoothed AC. Simulations and 
conclusions are reported in section 4 and 5. 

2. TIMESCALE ANALYSIS 

The CWT of y(t) is defined by: 

with $!Ja,7(t) = u-‘bi, % 
( ) 

a E lit*, TEIR 

The analyzing function family {$aZ,}aER., rEW is con- 
structed by dilation and translation of a function r/j 
called the mother wavelet (a is the dilation param- 
eter, T is the translation parameter). If li, satisfies 
the admissibility condition (which can be expressed as 

J_+do”Il>(t)dt = 0 h w en the Fourier Transform of $ is 
continuous) the transform admits a reconstruction for- 
mula [5]. This study is reskicted to real normalized 
wavelcts with symmetrical bounded support [F, T] : 

I 

+Y 
$(Q2dt = 1 

-iy 
(2) 

The CWT is invariant with respect to translation and 
dilation of the original signal. This property is used in 
many detection and classification applications [8]. 

The CWT displayed good properties for the detec- 
tion of AC, in non-zero mean multiplicative noise. 
The CWT emphasized the change of the observed pro- 
cess mean value. This change generated a signature in 
the time-scale domain. This signa.ture was defined as 
the CWT mean value [S] and expressed as [3]: 

T+l+ 
E [C&v) I HII = m-4 

I 
fo(tNC., (t) dt 

to --a0 
where m, = E [z(t)] (3) 

Eq. (3) shows that. the AC detect.ion problem is equiv- 
alent t.o a signature detection problem in the time-scale 

domain. Unfortunately, the signature based detection 
fails when noise is zero-mean, since the signature equals 
zero. This paper proposes to use a quadratic prepro- 
cessing followed by a time-scale detector. 

Denote rni (a, r) and u: (a, T) the mean and variance 
of Cya (a, 7) under hypothesis Hi, i = 0,l. The admis- 
sibility condition implies that: 

(4 
The signature is conic and points to the AC occur- 
rence time to. Fig’s 1 and 3 show the step and ramp 
signatures for the symmetrical Haar wavelet. The sym- 
metrical Haar wavelet is defined by: 

{ 

1 -if-+It<O 

dJ (4 = -&ifO<t<$ (5) 
0 otherwise 

This signature is embedded in noise in the time-scale 
plane. The variance of Cr,2(a, r) satisfies the following 
equations: 

(6) 

Eq. 4 show that the AC detection problem can be stud- 
ied using the pseudo-observation C$(u, r). The CWT 

associated with the quadratic non-linearity is a transi- 
tion between the observation and the decision. The 
transition space is the space of the process squared 
CWf$, A contrast criterion allows to order the set 
of applications from the observation to the pseudo- 
observations [7]. 

3. CONTRAST IN THE TIME-SCALE 
DOMAIN 

3.1. DEFINITION 

A contrast criterion well-matched to the det.ection prob- 
lem has t.o be determined. Define a contrast ^~f(u, r) 
associated to the statistic Cyz, at each point (a,~) of 
the time-scale plane as follows [7]: 

(7) 

In (7), varcr [cy 2 n: T)] is the variance corresponding ( 
to the mixing distriblnion: 

Pa (z) = (1 - c.u)PO (x) + crp1 (x) with (Y E [0, l] (8) 



where PO(.) t-d PI(.) are t.he distributions of Cyz (a? T) 
under hypotheses HO and HI. The criterions obtained 
for Q = 0 and a = 1 are usually called deflection and 
complementary deflection. The choice of parameter 
Q depends on the first and second order moments of 
CVz(a, T) under hypotheses HO and HI. Eq. (6) leads 
to: 

d(a, T) < +7 T) VT E R 

Consequently, t.he complementary deflection criterion 
is a more rcst,rictivc contrast measure than the cur- 
rently used deflect.ion criterion. The complementary 
deflection criterion expresses as: 

Denoting C = $A2, the complementary deflection 

criterion becomes: 

A sufficient condition for the third constraint is that 
the sign of $.. must be const.ant on [0, 91 and opposite 
on [-%, O] . Note that if zl/is continuous, $(O) = 0. 

When f(t) is an ideal step, ~f(a, T) reduces to: 

Ystep(U, 7) = 
UC (A + 2)” h> (v) 

1 + (( 1 + A)4 - 1) j& $)2 (t) dt 
(10) 

A large SNR is required at. the AC occurrence time to 
in order to estimate this parameter. For 7 = to and 
t.he symmetrical Haar wavelet, (10) leads to: 

Yst&: to) = 
UC (A + 2)2 h (0) 

1 + (( 1 + A)4 - 1) Jo* 6j2 (t) dt 
(11) 

The Cauchy-Schwarz inequality leads to: 

Hence: 

c~C(A+2)~9 
Ystep(% to) 5 

[Joy dj2 (t) dt] -’ + (1 + A)4 - 1 
(12) 

This contrast. expresses as a SNR in the timescale do- 
main, under hypothesis HI. It can be maximized with 
respect to the wavelet. Next section derives an opti- 
mal wavelet, maximizing ~f(u, T) for an ideal step. The 
SNR on the CWT maxima curve is then shown to 
be larger than t,he SNR in the time domain, for large 
scales. 

The equality in (12) is obt,ained when do (z) is constant 
over [0, +] . C onsequent,ly t,he wavelet, defined by: 

{ 

$1 (x) = c, E cc vx E [o: +“3 

111 (x) = -c,, vx E [-%,o] 

belongs to the class of solutions, C,,> is chosen such that 
$ is normalized and hence verifies (2) : C+ = -&. This 

wavclct is finally t,he Haar wavelet with symmetrical 
support. 

3.2. OPTIMAL WAVELET FOR AN IDEAL 
STEP 

The opt.imal wavclet is obtained by maximization of 
the cont,rast criterion under three constrainCs. 

The first constraint is the admissibilit,y condition. 
The second is the wavelet normalization (2). For joint 
detection-est,imation purpose, the conic AC signature 
modulus is expected t.o be maximum for 7 = to, at each 
scale. This provides an unbiased AC occurrence time 
estimate and an easy interpretation of the representa- 
tion. This property lea.ds to the t,hird constraint: 

m(a, to) > rnl((l! 7) VT # to vu E Et* 

which can be expressed as (for an ideal step): 

w4 > h(x) vx # 0 

with h(z) = ( JXy $(t)dt)2 . The first derivative of h(x) 

is: 

hi(x) = -2$(x) 1” $(t)dt 
I 

For 7 = to and t.hc symmet.rical Haar wavelet, (11) 
leads t.o: 

Yste&, to) = 
UC (A + 2)2 At 

2 (1 + (1 + A)“) 
(13) 

The SNR is proportional to the scale u for T = to. This 
property is still valid for 7 # to and large scales (when 
v goes to 0). This highlights the interest of working 
in the time-scale domain. In this simple case, t,he SNR 

in the time domain and in the time-scale domain can 
be compared. 

In order to appreciate CWT contribution, the pro- 
cess y2(t) is studied in the time domain. The SNR is 

ne domain, under both hypotheses: constant in the tir 

[SNR(t) IHi] = 
E [~“(t,]” 
zlur [y”(t)] (14 
mz2 

= 
up2 

vt E R (15) 



The SNR in the time domain depends on the noise 
statistics and is independent of the signal s(t).The SNR 

is greater in t.he time-scale domain than in the time do- 
main. if: 

U 2 Umin = 

2 (1 + (1 + A)“) 

At (A2 + 2A)2 
(16) 

This implies a minimum 1cngt.h for the observation in- 
terval: Lmin = Umin. 

3.3. ASYMPTOTIC OPTIMAL WAVELET FOR 
A SMOOTHED AC 

A smoothed AC is now considered. The SNR -yf(u, r) 
can be maximized for 7 = to in order to estimate the 
transition location: 

^If(Oo) = 
UC (A + 2)2 (It(u) + JI(u))~ 

1 -I- ((1 + A)4 - 1) [12(U) + .12(U)] 

(17) 

with: 

Ik(U) = j--j2k (g)@(t)dt k=1,2 

I 
9 

J&(U) = qQk (t) dt k= 1,2 
%! a 

Since j and @ arc assnmed bonnded: 

lim Ik(u) = 0 k= 1,2 
CZ4+CC 

Finally: if (a, to) .z++, -ystep(u: to). Conseqiiently, 

the symmetrical Haar wavelet is asymptotically opti- 
mal for smoothed 
that the CWT is 
shape. 

4. 

AC detection problem. It follows 
asymptotically robust to t.he AC 

SIMULATIONS 

1Vumerons simulations have been performed to validate 
the previous results. For the following experiment,, the 
transition j(t) is a step (at to = 500 with amplitude 
A = 0.4) or a ramp (j(t) = t, t E [-l,l], A = 0.4, 

~10 = 100, to = 500). The noise x(t) is white Gaus- 
sian with variance ~2 = 1. Fig’s. 1 and 3 show t.he 
ideal signatures in both cases. The multiplicative AC 

signature cross-section (corresponding to fixed scales) 
is proportional to the wavelet, integral, in the cast of 
an ideal step. The symmet.rical Haar wavclet leads to 

triangular cross sections. Fig’s 2 and 4 represent t,he 
noisy CWT of y2(t). The CWT is computed for scale 
varying from 200 to 350 with the symmetrical Haar 
wavelet. The conic signatnre is pointing to the AC oc- 

cnrrence time to = 500, in both cases. Not.c that the 
cone is smoother and of lower amplitude, for a ra.mp 
than for a step. However, it emerges from noise for 
large scales, in both casts. 

Fig. 1 : Signature of a step (A = 0.4, to = 500) with 
symmetrical Haar wavelet 
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Fig. 2 : CWT of a st.ep (A = 0.4, to = 500) embedded 
in mnhiplicative noise ((TX = 1) with symmetrical 

Haar wavelet 



time scale 

Fig. 3 : Signature of a ramp 
(A = 0.4, to = 500, a0 = 200) with symmet.rical Haar 

wavelet, 

time 400-50 
0 200 

scale 

Fig. 4 : CWT of a ramp (A = 0.4, to = 500, uo = 200) 

embedded in multiplicative noise (oZ = 1) with 
symmetrical Haar wavelet 

5. CONCLUSION 

Abrupt changes corrupted by zero-mean multiplicative 
noise were studied using the continuous wavelet trans- 
form and a quadratic non-linearity. The first and scc- 
ond order moments of the observed process continu- 
ous wavelet transform were derived. These moments 
allowed to define an abrupt change signature in t.he 
time-scale domain. The complementary deflection was 
chosen as a contrast criterion in the time-scale domain. 
The Haar wavelet was shown to maximize the contrast 
on the continuous wavelet transform maxima curve, for 
an ideal step and a white noise. The signal to noise ra- 
tio on the continuous wavelet. transform maxima curve 
(for some minimum scale) was larger than in the time 

domain. For the smoothed abrupt. change, the Haar 
wavelet was asymptotically optimal on the continu- 
ous wavelet transform maxima curve. The continuous 
wavelet transform is an effective t,ool for abrupt, change 
detection, since it is asymptotically robust to the tran- 
sition shape. 
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