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ABSTRACT

This work applies the Continuous Wavelet Transform
(CWT) to Abrupt Change (AC) detection in zero-
mean multiplicative noise. An AC signature can be
defined because of CWT translation invariance prop-
erty. The problem is then signature detection in the
time-scale domain. A contrast criterion is defined as
a second-order measure of performance. This contrast
depends on the first and second order moments of the
multiplicative process CWT. An optimal wavelet max-
imizing the contrast is derived for an ideal step in white
multiplicative noise. In this fundamental case, the Sig-
nal to Noise Ratios (SNR) in the time domain and
in the time-scale domain are compared. A scale exists
above which SN R is larger on the CWT maxima curve
than in the time domain. An asymptotically optimal
wavelet is derived for smoothed AC.

1. INTRODUCTION AND PROBLEM
FORMULATION

Multiplicative noise models have been considered in
many applications. These applications include image
processing in systems using coherent radiation (radar,
laser) [2] and random communication models (fading
channels) [9]. For object contour extraction or for seg-
mentation purpose, these applications require the de-
tection and estimation of abrupt change (AC) in the
observed process moments [1]. This paper applies the
Continuous Wavelet Transform (CWT) to AC detec-
tion in zero-mean multiplicative noise. The detection
algorithms are different whether the multiplicative noise
is zero-mean or not. The CWT has been shown to be
an effective tool for the AC detection problem when
the noise is non-zero mean [3]. The optimal Neyman-
Pearson detector and two suboptimal detectors based
on the time-scale signature have been successfully stud-
ied [4]. Unfortunately, these algorithms fail when the
noise is zero-mean.

This paper proposes to use a non-lincar preprocess-
ing followed by a time-scale detector for the AC de-
tection problem, when the multiplicative noise is zero-
mean. The quadratic non-linearity has been chosen
for simplicity. However, other non-linearities could be
studied in a similar way. The detection problem ex-
presses as a simple binary hypotheses testing:

Under the null hypothesis Hy, the observed process
y(t) is a white noise with variance o2:

y(t) = 2(t)

Under the hypothesis H;, the observed process y(t)
is modeled by:

() z(t)s(t) = (%) [1 +Af <t ;Oto)]

= z(t)[1+ Af, ()]
t € QteNA>0, a3>0

where © is the observation interval. s(t) is a deter-
ministic signal with parameter vector 8 = (A4, to,ao)t
(amplitude, instant, dilation). s(t) corresponds to a
transition from 1 to 1+ A. f characterizes the transition
shape. f is assumed positive, bounded and satisfies:

#e) =
£t =

Note that s(#) tends to an ideal step with amplitude A
at position 3 when ag — 0.

Section 2 analyzes the AC in the time-scale do-
main when noise is multiplicative. First and second or-
der moments are derived under both hypotheses. The
CWT translation invariance property allows a multi-
plicative AC signature to be defined. Section 3 pro-
poses the complementary deflection as a contrast mea-
sure in the time-scale domain. It measures wavelet
ability to separate the two hypotheses. The comple-
mentary deflection is equivalent to a Signal to Noise

Ofort< -1
1fort>1



Ratio (SNR) in the time-scale domain, under hypoth-
esis H;. Comparison of the SNR in the time and
time-scale domains displays the CWT capabilities for
detection in the multiplicative context. The SNR in
the time-scale domain increases with the scale on the
CWT maxima curve, whereas it is constant in the time
domain. This section derives an optimal wavelet max-
imizing the SN R, for an ideal step on the CWT max-
ima curve. The minimum scale for which the SNR is
larger on this curve than in the time domain is then
determined. This wavelet is shown to be asymptoti-
cally optimal for any smoothed AC. Simulations and
conclusions are reported in section 4 and 5.

2. TIME-SCALE ANALYSIS

The CWT of y(t) is defined by:

+oco
Cyla,7) = / y(tys, () dt (1)
. _ ~1/ " t—1T1
with Y .(t) = a 121_1( - )

a € R 7€eR

The analyzing function family {t;,},cg- ,cg 18 cOD-
structed by dilation and translation of a function
called the mother wavelet (a is the dilation param-
eter, T is the translation parameter). If 1 satisfics
the admissibility condition (which can be expressed as
J*°4(t)dt = 0 when the Fourier Transform of ¢ is
continuous) the transform admits a reconstruction for-

mula [5]. This study is restricted to real normalized
: o —At At].
wavelets with symmetrical bounded support [-2—, T] :
4t
Y(t)2dt =1 (2)
4

The CWT is invariant with respect to translation and
dilation of the original signal. This property is used in
many detection and classification applications [8].

The CWT displayed good properties for the detec-
tion of AC, in non-zero mean multiplicative noise.
The CWT emphasized the change of the observed pro-
cess mean value. This change generated a signature in
the time-scale domain. This signature was defined as
the CWT mean value [6] and expressed as [3]:

T—f—aA,l£
E [Cy(a’ 7) | Hl] = mzA fO(t)ili);.r (t) dt
where m; = F[z(t)] (3)

Eq. (3) shows that the AC' detection problem is equiv-
alent to a signature detection problem in the time-scale

domain. Unfortunately, the signature based detection
fails when noise is zero-mean, since the signature equals
zero. This paper proposes to use a quadratic prepro-
cessing followed by a time-scale detector.

Denote m;(a, 7) and 0?(a, 7) the mean and variance
of Cy2(a,7) under hypothesis H;, ¢ = 0,1. The admis-
sibility condition implies that:

mo(a,T) = mga f:f:g Yo, (t)dt =0

r4a
my(a,7) = Amga fto_u?“ [25,@) + Afoz(t)] ¥, (t)dt
()
The signature is conic and points to the AC occur-
rence time ¢p. Fig’s 1 and 3 show the step and ramp
signatures for the symmetrical Haar wavelet. The sym-
metrical Haar wavelet is defined by:

1 i At
Y; if -5 <t<0

Ty if0<t< g (5)
0 otherwise

¥ (t) =

This signature is embedded in noise in the time-scale
plane. The variance of Cy2(a, 7) satisfies the following
equations:

ag(a, T) = :2 (6)
o2(a,7) =02 [T (1) y2, (1) dt

Eq. 4 show that the AC detection problem can be stud-
ied using the pseudo-observation C,2(a, 7). The CWT
associated with the quadratic non-linearity is a transi-
tion between the observation and the decision. The
transition space is the space of the process squared
CWT"s, A contrast criterion allows to order the set
of applications from the observation to the pseudo-
observations (7].

3. CONTRAST IN THE TIME-SCALE
DOMAIN

3.1. DEFINITION

A contrast criterion well-matched to the detection prob-
lem has to be determined. Define a contrast vy¢(a, )
associated to the statistic Cy2, at cach point (a,7) of
the time-scale plane as follows [7]:
2
[ma(a, 7) — mo(a, 7)|
1 (a,7) =
Varg [Cy2(a, 7)]

(7)
In (7), Var, [Cy2(a,7)] is the variance corresponding
to the mixing distribution:

Pa (z) = (1 — @) po (z) + ap; (z) with « € [0,1] (8)



where po(.) and p1(.) are the distributions of Cy2(a, 7)
under hypotheses Hy and H;. The criterions obtained
for & = 0 and a = 1 are usually called deflection and
complementary deflection. The choice of parameter
a depends on the first and second order moments of
C,2(a, 7) under hypotheses Hy and H;. Eq. (6) leads
to:

o3(a,7) < 02(a,T) Yref

Consequently, the complementary deflection criterion
is a more restrictive contrast measure than the cur-
rently used deflection criterion. The complementary
deflection criterion expresses as:

my(a,T)?

e = oy

2
Denoting C = %fz—/ﬁ, the complementary deflection
z2

criterion becomes:

[fote¥ [2£0(t) + AR Yar (1)
| s () y2, (t)dt

vf (a’ T) =
(9)

This contrast expresses as a SN R in the time-scale do-
main, under hypothesis H;. It can be maximized with
respect to the wavelet. Next section derives an opti-
mal wavelet maximizing vs(a, ) for an ideal step. The
SNR on the CWT maxima curve is then shown to
be larger than the SINR in the time domain, for large
scales.

3.2. OPTIMAL WAVELET FOR AN IDEAL
STEP

The optimal wavelet is obtained by maximization of
the contrast criterion under three constraints.

The first constraint is the admissibility condition.
The second is the wavelet normalization (2). For joint
detection-estimation purpose, the conic AC signature
modulus is expected to be maximum for 7 = 1, at each
scale. This provides an unbiased AC occurrence time
estimate and an easy interpretation of the representa-
tion. This property leads to the third constraint:

my(a,to) > mi(a, 1) VT #ty VaecR*
which can be expressed as (for an ideal step):

h(0) > h(z) Vz #0

with h(z) =
is:

( ¥ e df) . The first derivative of h(z)

a
h(z) = —2¢($)/ P(t)dt

A sufficient condition for the third constraint is that

the sign of ¢y must be constant on [0, %] and opposite

on [—— O] Note that if ¥ is continuous, 4(0) = 0.
When f(t) is an ideal step, v(a, 7) reduces to:

)= aC(A+2) (39‘—"') 10
Tatep(,7) 1+((1+A )ft_,q,,zf (10)

A large SN R is required at the AC occurrence time ¢
in order to estimate this parameter. For 7 = t3 and

the symmetrical Haar wavelet, (10) leads to:
aC (A+2°h(0
')’step(a: tO) = ( P ) A(z)
1+ (144 - 1) [oF w2 () at

The Cauchy-Schwarz inequality leads to:
/ dt / P2

(o) € — aC (A+ 2)? At (12)
(¥ w2t +a+a)-

Hence:

The equality in (12) is obtained when 1) (z) is constant
over [O, %] . Consequently the wavelet defined by:

{ 1/)(:1:) = C,/,- eC
P (x) = —Cy
belongs to the class of solutions, Cy, is chosen such that
3 is normalized and hence verifies (2) : Cy, = 7— This
wavelet is finally the Haar wavelet with symmetrical
support.

For 7 = t¢ and the symmetrical Haar wavelet, (11)
leads to:

vz € [0, 5]
Ve € [—4L,0]

aC(A+2)* At
2 (1 +(1+ A)“)

Ystep(@, o) = (13)

The SNR is proportional to the scale a for 7 = #g. This
property is still valid for 7 # t¢ and large scales (when
5“;—" goes to 0). This highlights the interest of working
in the time-scale domain. In this simple case, the SNR
in the time domain and in the time-scale domain can
be compared.

In order to appreciate CWT contribution, the pro-
cess y2(t) is studied in the time domain. The SNR is
constant in the time domain, under both hypotheses:

E[y*(#)]”

[SNR@®) | H] = i (14)
= ’;’;2 VieQ  (15)



The SNR in the time domain depends on the noise
atotictinre andigindanandant af+ha oignal of Y ThL, CAT D
DLALInLILD dllu I LIIUTPTHUCILL UL LI dlglial D\b}- AT LIV IL
is greater in the time-scale domain than in the time do-

main, if:

2 (1 +Q+ A)“)
At (A2 + 24)*

(16)

a2 Amin =

This implies a minimum length for the observation in-
terval: Limin = Gmin-

3.3. ASYMPTOTIC OPTIMAL WAVELET FOR
A SMOOTHED AC

A smoothed AC is now considered. The SNR v5(a,T)
can be maximized for 7 = ¢y in order to estimate the
transition location:

aC (A + 2)% (Ii(a) + J1(a))?

a, ty) = 17
(@ %) 1+((1+A)4—1)[I2(a)+.]2(a)] an
with:
29
Ii(a) = /__:Qf%(Z—Z)wk(t)dt k=1,2
Ji(a) = /a%_i/)k(f)df k=1,2

Since f and v are assumed bounded:

lirri Ii(a) = 0 k=1,2
¥ k
lim Jg(a) = / P~ (t) dt k=1,2
a—+-00 0
Finally: ~¢(a,to) o Ystep(a, to). Consequently,

the symmetrical Haar wavelet is asymptotically opti-
mal for smoothed AC detection problem. It follows
that the CWT is asymptotically robust to the AC
shape.

4. SIMULATIONS

Numerous simulations have been performed to validate
the previous results. For the following experiment, the
transition f(t) is a step (at fp = 500 with amplitude
A =04)or aramp (f(t) =t t € [-1,1], A = 04,
ap = 100, to = 500). The noise z(t) is white Gaus-
sian with variance 02 = 1. Fig’s. 1 and 3 show the
ideal signatures in both cases. The mmltiplicative AC
signature cross-section (corresponding to fixed scales)
is proportional to the wavelet integral, in the casec of
an ideal step. The symmetrical Haar wavelet leads to

triangular cross sections. Fig’s 2 and 4 represent the
nlaxr FYYATT o 2272 Ml 7YVATT 2o mpmeonns 4 L ciren T
HULBY WYy L UL Yy (). 1LUC Uy 14 15 COLIpuLed 10r scdle
varying from 200 to 350 with the symmetrical Haar
wavelet. The conic signature is pointing to the AC oc-
currence time #y = 500, in both cases. Note that the
cone is smoother and of lower amplitude, for a ramp
than for a step. However, it emerges from noise for

large scales, in both cases.

] EIC,,a,D)}

Fig. 1 : Signature of a step (A = 0.4,%y = 500) with
symmetrical Haar wavelet

Fig. 2 : CWT of a step (A = 04,1y = 500) embedded
in multiplicative noise (¢, = 1) with symmetrical
Haar wavelet



Fig. 3 : Signature of a ramp
(A =0.4,tp = 500,a0 = 200) with symmetrical Haar
wavelet
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Fig. 4 : CWT of a ramp (A = 04, fy = 500, ap = 200)

bedded in multinlicative noise (n'_ = 'I\ with
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ymmetrical Haar wavelet

o

5. CONCLUSION

Abrupt changes corrupted by zero-mean multiplicative

noise were studied using the continuous wavelet trans-

form and a quadratic non-linearity. The first and sec-

ond order moments of the observed process continu-

ous wavelet transform were derived. These moments

allowed to define an abrupt change ';ignature in the
cirnla Ao a i PRSI DTt g

mL 51 Y 2 PR
Llult‘—\balc uuuuuu ine cullipicaicial 'y LlLJlU\ ll.Ull was

chosen as a contrast criterion in the time-scale domain.

The Haar wavelet was shown to maximize the contrast

on the continuous wavelet transform maxima, curve, for
an ideal step and a white noise. The signal to noise ra-
tio on the continuous wavelet transform maxima curve
(for some minimum scale) was larger than in the time

domain. For the smoothed abrupt change, the Haar

wravalat waa agvmntotioally antimal an tha ~ands
waveiet was aayu;yuuu\,auv Opvinial Oll the continu-

ous wavelet transform maxima curve. The continuous
wavelet transform is an effective tool for abrupt change

detection, since it is asymptotically robust to the tran-
sition shape.
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