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ABSTRACT 

The influence zone transform is a fundamental tool in mor- 
phological and qualitative digital image processing. Be- 
cause of its inherent geodesic properties, it is most efficiently 
computed using propagation front or grassfire based meth- 
ods. However, when the image processed is too large to be 
contained in available memory, the random access nature 
of these algorithms makes them exceptionally inefficient. 
In order to alleviate this problem, we have developed two 
algorithms that greatly reduce the memory requirements of 
the transform. The first is designed specifically for com- 
puting the influence zone transform on surfaces, without 
storing the volume enclosing the surface. The second per- 
forms the transform using only the propagation fronts, and 
without storing any part of the region that is being pro- 
cessed. Both methods use much less memory than the ones 
in the literature, and thus enable the transform to be per- 
formed on much larger images than before. However, since 
all three algorithms use a significant number of set-access 
operations, they are considerably slower that their classical 
counterparts. Several techniques have been developed in 
this work in order to minimize the effect of these set opera- 
tions. These include fast search methods, double propaga- 
tion fronts, directional propagation, and others. 

1. INTRODUCTION 

The concept of distance [l] is fundamental to most areas of 
image processing and analysis. The geodesic distance func- 
tions are particularly useful in many tasks that require the 
description of distance within a specific region. There are 
a number of methods that can segment an image according 
to a distance criterion. Among the simplest of these is the 
influence zones transform [2], which classifies points of the 
image according to their geodesic distance from a predefined 
number of markers. It is commonly accepted that the above 
method is by far best performed by propagation fronts. 
Here we shall concentrate on the use of propagation-based 
algorithms on images that cannot fit in available memory. 
Such are the three-dimensional images, whose third dimen- 
sion greatly increases the image size. Three dimensional 
images are used mostly in biomedical applications [?I, but 
also in geophysics, in industrial quality control and else- 
where. Large images are also met where exceptionally high 
resolution is required, as in digital photography, topography 

and geodesy, and in other applications. In the following the 
description of the algorithms will be given for the case of of 
3-D images. However, the algorithms are equally applicable 
in two or multiple dimensions. 

When processing large images, it is impossible to keep 
the entire image in the computer memory (RAM). Usually, 
the image is stored in the permanent storage medium (mag- 
netic disk, WORM, CDROM, network storage) and the al- 
gorithm reads parts of the image that are needed in the com- 
putation. The part of the image that is read each time has 
to be small enough to fit in available memory. Each point 
in the image is read as many times as the algorithm pro 
cesses it. However, seek time exceeds read time by orders of 
magnitude, so it is important to read the data sequentially, 
when this is possible. t is also important that each point 
of the image be read as few times as possible. Most image 
processing transforms are local, and therefore can be im- 
plemented by sequential algorithms [6]. These process the 
image using a predefined scanning order. Consequently the 
image may be read from the permanent storage medium in 
segments that have size equal to the available memory, thus 
minimizing the delay caused by the seek operations. How- 
ever, in propagation-based methods for the influence zones 
transform there is no predefined order for processing the 
image. Therefore, the use of propagation front algorithms 
in large images presents serious problems. 

In the following, we shall present two algorithms that 
solve the above problems by minimizing memory require- 
ments. First, in Section 2, the theoretical foundations of 
the influence zones transform are briefly reviewed. Then 
the existing algorithms are described. In Section 3, an algo- 
rithm designed to perform the influence zone transform on 
surfaces or other regions of interest is presented. in Section 
4, we describe a second algorithm which processes complete 
domains without the storage of the underlying image, but 
only using the propagation fronts. 

2. THEORETICAL BACKGROUND AND 
ALGORITHMS 

2.1. Basic definitions 

Let D denote and image region D c 2”. A path of length 
n in D is defined as a sequence of points (pc, ~1,. . . , p”), 
pi E D such that pi+1 is adjacent to p;. The discrete 



geodesic distance from point p to point p’ is defined as 
the minimum length of all paths starting at p and ending 
at p’ and will be denoted dist(p,p’). Furthermore, the 
distance from a set S c D to a point p is defined as the 
minimum of all distances from points of S to p. We define 
a gmvrth of S within D as the set S(1) = S U G(1) where 
G(1) = {p E D - S, p E Nc(p’), p’ E S}. It contains only 
all points that are adjacent to S. The n-th growth of S, 
S(n) is the growth of S(n - 1). Similarly, it contains all 
points that have a distance of n from S. In morphological 
terms, if the connectivity C is seen as a structuring element, 
the n-th growth of set S is expressed as (S 3 nC’) - S. 

2.2. Influence zone transform 

Supposing that there are m sets Si, . . . S,,,, Si E D, Si U 
Sj = 0, i # j (called markers), we define the influence zone 
of Si as the set: 

Izo(S,) = {p E D, dist(S,,p) < dist(Sj,p), Vj # i] 

The skeleton by influence zones of D is defined as: 

SKIZo = {p E D : 3i # j, dist(Si, p) = dist(Sj, p)} 

A point p E D belongs to IZn(Si) if and only if: 

p E S(n), p $Z Sj(m), Vj # i, Vm 5 n 

By defining as D(n) = {p E D, 3 : p E Si(n), yj : p E 
Sj(m) m > n}, it is clear that if p E D(n), p E SK~ZD 
then for all p’ such that p’ E NC(P), p’ E D(n + 1) hold 
that p’ E SKIZD. Thus, the influence zone transform 
can yield very thick skeletons. It is consequently neces- 
sary to modify its computation in such a way as to mini- 
mize the number of skeleton points without sacrificing con- 
sistency. This can be achieved by modifying D, defining 
D’(n) = D(n) - SKIZn(n) and calculating D(n + 1) us- 
ing D’(n). This effectively eliminates the effect described 
above, without altering the classification of points already 
in influence zones. 

2.3. Algorithms using propagation fronts 

There are many algorithms for computing the influence 
zones, some of them parallel, other sequential. The fastest, 
though, are those that use propagation f~ont.5 (also called 
grassfires or wavefronts) to process each point in D only 
once, that is at the time a zone’s growth reaches it. These 
propagation fronts are implemented by a data strucure (queue, 
list, stack, array) that stores all points in the edge of the 
influence zone. In the following we shall refer to that struc- 
ture as a propagation front, without specifically stating how 
it is implemented. 

These algorithms have the following steps: 

1. Label the points of the influence zone of each marker 
Si with a unique label in a label image. 

2. Put the points of each marker in the propagation 
front. 

3. For each top point of each propagation front, find 
all adjacent points that are not labeled in the label 
image, put them in the propagation front and label 
them. 

4. Remove each point from a propagation front after it 
has been processed, then go to step 3. 

3. INFLUENCE ZONE TRANSFORM ON 
SURFACES AND OTHER REGIONS OF 

INTEREST 

In various applications in image processing, graphics and 
other fields, it is often necessary to perform a geodesic in- 
fluence zone transform on a surface. For example, this is the 
case when computing the Delauney triangulation of a sur- 
face [s], based on previously calculated geodesic influence 
zones (Voronoi tesselation). 

However, in the case of the algorithms described in Sec- 
tion 2.3, in order to store the surface in RAM, the storage of 
the enclosing rectangular volume is needed. If the surface is 
not approximately planar, the size of the volume that needs 
to be stored in memory exceeds the size of the surface by 
orders of magnitude. Thus, the volume containing a sur- 
face may be too large to fit in available memory, although 
the surface itself is not. Because the transformation is per- 
formed on an image domain too large to fit in memory, the 
performance of the classical algorithms drops drastically. 
The proposed solution to this problem is to store only the 
surface points, and not the whole volume. 

3.1. Storage of the region of interest 

The most common method to represent an image or a vol- 
ume is in the form of a bitmap - an array which contains 
the image information, whether it is greyvalues or labels. 
However, because of the one-to-one correspondence between 
memory and image, the shape of a region stored as a bitmap 
can only be a parallelepiped. Thus, in order to store an ar- 
bitrarily shaped region or surface, this method will need to 
be abandoned and alternative ones be sought. 

The obvious method for the representation of an arbi- 
trarily shaped point set is to store each point separately, 
defining it with its coordinates and value, in an array. The 
disadvantage of this method is that accessing the value of a 
point, given its coordinates, requires a search through the 
entire image region t.hat is stored in memory. The solution 
that is applied to solve this problem is two sided. Firstly, 
the minimization of the seek time of a point in the image 
is attempted. Secondly, ways to limit the search operations 
of the algorithm are sought. 

In order to minimize the seek time of a point in a region 
stored in an array of points in coordinate form is to sort this 
array, and then to perform sorted search operations on it. 
The ordering that is going to be used in the following is the 
one commonly used in the storage of images. In the three- 
dimensional case we sort first by the r-coordinate, then by 
the y-coordinate and then by the s-coordinate. Hence, this 
ordering will be called the basic order. It will be shown 
that this choice of ordering will be beneficial because of its 
correspondence with the way images are stored. 

3.2. Use of double propagation fronts 

The only image access operations performed by the propa- 
gation front based algorithm are those that find the image 



points adjacent to a propagation front point and, depending 
on their labels, may add them to the propagation front and 
label them accordingly. Since the size of a propagation front 
is much smaller than the size of the image region, search- 
ing for a point in it is much faster than searching for it in 
the image. This only holds if the points in the propagation 
front are sorted, facilitating search operations of logarithmic 
computational complexity. Thus, if the points in the cur- 
rent propagation fronts are sorted before the propagation 
begins and each point adjacent to them is sought among 
them before being sought in the image, significant perfor- 
mance gains can be achieved. In order to reject points from 
previous propagations, the immediately previous propaga- 
tion fronts must be kept, and points must he searched in 
them as well as in the current propagation fronts. These 
previous propagations constitute what we will call the sec- 
ond or backup level of the propagation fronts. 

So, the final method used for the minimization of search 
operations on the entire image region is storing the two 
levels of the propagation fronts. Thus, each point adjacent 
to a point that belongs to the current propagation front is 
first sought in these two levels of the propagation fronts and, 
if it is not found thcrc, it is sought in the image. On average, 
half of these adjacent points are found in the propagation 
fronts and the rest must be searched for both in the image 
and in the propagation fronts. Thus, the speed of this part 
of the algorithm is effectively doubled. 
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Figure 1: Processing time for the domain storage algorithm. 

3.3. Results 

A test image was created in order to verify the algorithm 
experimentally. It consists of a spherical surface having a 
radius of 127 enclosed in a 256 x 256 x 256 volume. In this 
sphere a number of point markers were randomly inserted, 
ranging in number from 2 to 65536. The tests were per- 
formed on a PC with a Pentium processor at 90 MHz and 
32 Mbytes of RAM, running Microsoft Windows NT Server. 

The speed of the algorithm remained constant at 13 to 
14 seconds for most of the tests and only rse significantly 
when using more than 16384 marker points, as can be seen 
in Figure 1. Above that number, the number of markers 
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Figure 2: Maximum number of iterations for the domain 
storage algorithm. 
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Figure 3: Maximum and average number of points in prop- 
agation fronts for the domain storage algorithm. 

becomes comparable to the number of points in the sur- 
face, and the entire algorithm degenerates. The execution 
time remains constant although the number of iterations de 
cresses with the number of markers as can be seen in Figure 
2, meaning that the time spent on esch iteration increases 
with marker number. he number of points in the propaga- 
tion fronts increased with marker number, but they never 
exceeded the number of points in the region, as can be seen 
in Figure 3. In most cases, the average number of points in 
the fronts remained well over one order of magnitude below 
the number of domain points. 

If we assume a uniform distribution of markers on the 
image, the number of points belonging to each influence 
zone can be approximated as P,,,, = PRegion/n where n 
the number of markers and PR~~~~,, the constant number 
of points in the region. If the region is modeled as a vol- 
ume, the radius of the influence zone is r = kl G. 
Therefore the number of points on the front is Pfront = 

kz(PRegion/n)2’3, and thus the total number of points in 
fronts Ptot = k3 $?i. If the region is modeled as a plane, 



the radius is T = kd- and the number of points in 
fronts is Pfront = kSd= and the total number 
P tot = ke&i. Because the region used is almost exactly 
the surface of a sphere, the results for the above quanti- 
ties should be closer to that of the planar case. Indeed 
the measurements shown in Figure 3 were modeled by the 
least-squares method to be as follows: 

. The maximum number of points stored in propaga- 
tion fronts during the execution of the algorithm is 
modelled by max(Pt,t) = kn0.47. 

l The average number of points stored in propagation 
fro;t,“, during execution was modelled by avg(Pt,t) = 

Also, again as expected, the number of propagation steps, 
as shown in Figure 2 was modelled as max(r) = knpov4’. 

4. INFLUENCE ZONES TRANSFORM 
WITHOUT IMAGE STORAGE 

The algorithm presented in Section 3.1 is of no help in the 
case bhat t.he area to be segmented is a large image. In this 
case, the need to store the influence zone labels leads to 
serious performance problems. The only way to avoid these 
problems is to avoid the storage of the image in memory 
and to store only the propagation fronts and compute the 
transform solely with operations on them. 

Unfortunately, without the image, there is no simple 
way to know whether a point belongs to the skeleton or to 
an influence zone (and to which) or to neither. The influ- 
ence zone algorithm requires that each point adjacent to a 
propagation front point is labeled as an influence zone or 
skeleton point and, accordingly, is appended to the propa- 
gation fronts or not. Thus, we have to find some other way 
to determine whether such an adjacent point has already 
been visited by the propagation front.s, or is a new propa- 
gation front point or is a collision point that belongs to the 
skeleton. 

4.1. Determining collisions 

The first step towards determining the status of a point 
adjacent to a propagation front is to establish whether it 
has already been visited by that propagation front. As de- 
scribed in Section 3.2, a way to achieve this is to use double 
(or backed-up) propagation fronts. Because the mainte- 
nance and operation of the double fronts is inexpensive in 
both memory and computation terms, and because they do 
not require image reference operations, they are a natural 
choice for this task. 

However, the double fronts cannot determine whether 
a point has been visited by another propagation front, or 
whether it is the point where two propagation fronts collide. 
Having determined that a new point has not been already 
visited by its respective propagation front, an way must 
be found to check whether it appears in any other new 
point set or propagation front. In order to achieve this, a 
minimum heap is used [9]. The heap’s function is to extract 
quickly the minimum element it contains, and to accept 
new elements in any order. The computational cost for the 
extraction of the minimum of the heap is O(log(i)), and 

the cost for the insertion of an arbitrary element is also 
O(log(i)) where i is the number of elements in the heap. 

The heap is used to receive the points from the prop- 
agation fronts and the sets of new points that are to be 
appended to each of them. The size of the heap is 2n points 
and the computational cost of the insertion O(log(n)), where 
n is the number of markers. This is because both the fronts 
and the new point set.s are sorted on the basic order be- 
forehand. Thus, if their first points are inserted into the 
heap, the next point extracted from the heap will be the 
minimum of all the points left in them. 

Thus, by successively extracting points from the heap, 
and then inserting into the heap the next point from where 
the extracted point originated from, we can guarantee t,o 
receive all the points in the basic order. Duplicate points 
will be in succession and can be identified as such. If there 
is a number of identical points from different new point 
sets, and there is no point from a propagation front among 
them, it means that this point is a skeleton point. In this 
case, all the points are removed from their respective sets 
and appended to the set of skeleton points. If there is a 
point originating from a propagation front among a num- 
ber of identical points, all other points arc removed from 
their respective sets. Thus, the determination of the colli- 
sions between fronts can be achieved with only O(log(n)) 
computational complexity per point. 

4.2. Skeleton maintenance and result output 

In order to have a proper computation of the influence zones 
transform, the skeleton points must be properly computed. 
Because the propagation step does not continue through 
skeleton points, and because of the geodesic nature of the 
transform, all skeleton points need to be kept in order to en- 
sure the correct propagation of the fronts. So, the skeleton 
points found by using the heap at the end of each propa- 
gation step are temporarily kept in a list. When the heap 
has processed all points this list is sorted and merged into 
an array containing all skeleton points found in previous 
propagation steps. This array is then used as an input to 
the heap, in order to determine further collisions. 

Also, the fact the image is not kept in memory means 
that the result is not explicitly available. However, it is pos- 
sible to store the result of the transformation to disk, as the 
algorithm is running. This is best done at the end of each 
propagation step, when all points pass through the heap and 
receive their final labels. At that time, the points that have 
been reached in the current propagation step are written, 
in coordinate form, to intermediate disk file corresponding 
to their z-coordinate. Because the points are coming out of 
the heap in the basic order (which was chosen to be based 
first on their r-coordinate), they are written to disk contin- 
uously and, therefore, without delays. After the end of the 
algorithm, these files are read and the points they contain 
are written to their final positions in the output file, which 
is in bitmap format. 

4.3. Results 

We have used our algorithm to perform the influence zone 
transform on a 256 x 256 x 256 image, which contained from 
2 to 16385 markers. The machine used for the tests was a 
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Figure 4: Processing time for the fronts-only algorithm. 
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Figure 5: Maximum number of iterations for t.he fronts-only 
algorithm. 

PC with a Pentium processor at 90 MHz and 64 Mbytes of 
RAM, running Microsoft Windows NT Server. The perfor- 
mance of the algorithm was satisfactory, rising very slowly 
for small numbers of markers, but faster when the number 
of markers goes above 1024. The memory requirements of 
the fronts were naturally small, but greatly increased with 
marker density. Again, the number of iterations were de- 
pendant on the number of markers. The above are demon- 
strated in Figures 4, 5 and 6. 

5. CONCLUSIONS 

We have presented two algorithms to reduce greatly the 
memory requirements of the influence zone algorithm, thus 
making them computable on large images. The first of these 
algorithms which computes the influence zone transform 
on surfaces, was demonstrated to have in satisfactory speed 
and to achieve very large memory savings. The performance 
of the second, which uses only the propagation fronts to per- 
form the transform, is somewhat less satisfactory in speed, 
but still achieves significant memory gains with reasonable 
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Figure 6: Maximum and average number of points in prop 
agation fronts for the fronts-only algorithm. 
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