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ABSTRACT 

A neural network for edge-preserving image interpc+ 
lation is introduced, which is based on the non-linear 
procedure which is presented by Greenspan [2]. Sim- 
ulation results show the superior performances of the 
proposed approach with respect to other interpolation 

techniques. 

1 Introduction 

Enlargement of images corresponds to narrow Nyquist 
interval in digital images. Usually, enlargement of im- 
ages are given by interpolation by using sine function 
based on sampling theorem. Generally, there are in- 
finite frequency components in natural images. Sam- 

pling images, there are lost high frequency components 
in digital images. Thus, we need for creating images 

with higher resolution than the sampling rate would 
allow. However, enlarged images by using sine func- 

tion don’t have high frequency components which were 
lost by sampling. Greenspan had presented the proce- 
dure for predicting an unknown higher resolution im- 

age, which utilizes Laplacian pyramid image represen- 
tation [2]. This paper presents a novel enlargement 

method by using a neural network which is ex- 
tended Greenspan’s non-linear procedure. Results are 
presented depicting the visual enhancement of several 
images. Several simulation results are presented the 
proposed method is superior to the Greenspan’s method. 
Furthermore, we show the robustness of the proposed 

method. 

2 The Enlargement by Non-linear 
Method 

Gaussian and Laplacian pyramids, as described by 
Burt [l], are utilized. The Gaussian pyramid consists 
of lowpass filtered versions of the input image as Go, 
with each stage image as Gn+l of the pyramid achieved 
by Gaussian filtering of the previous stage one as G, 
and corresponding subsampling of the filtered output. 

The Laplacian pyramid consists of bandpass filtered 
versions of the input image, with each stage of the 
pyramid constructed by the subtraction of two corre 

sponding adjacent. levels of the Gaussian pyramid. A 
recursive procedure allows for the creation of the pyra- 
mids, as follows: 

&+I = W * G,, (1) 

G n+l = down sampling &+I, (2)’ 

L, = Gn - -ND(G,+l), (3) 

~~D(Gn+l) = 4 x (W * Go,,,), (4) 

where “*” show the convolution operation and Go,+, 

whose size is the same with G, is the interpolated zero 
of Gn+l. Generally, the weighting function W is Gaus- 
sian in shape and normalized to have the sum of its 
coefficients equal to 1. The value for a S-sample sep 
arable filter are (l/16,1/4,3/8,1/4,1/16). The higher 

level image Gpl than the original digital image GO is 
got G-1 = L-1 +EXPAND(Go). However, L-1 is un- 
known and it is necessary to predict a higher frequency 

component L- 1. 

An edge can be characterized by zero crossings (ZC) 

in the Laplacian image. Main edges are observed across 
different resolution images. Utilizing the character, 

Greenspan has presented a procedure for predicting 
L-1 by non-linear method using LO. The algorithm 
includes the following 3 steps: 

Step 1 We extract the high frequency components 4, 

of an image cb and create EXF%VD(~) from the &, 

Lo = G,, - EXPAND(G1). (5) 

Step 2 We obtain i-1 by thresholding as follows. 

i-1 = BOUN~EXPAND(L,,)} 

T 

{ 

ifEXPANL&) 2 T 

= ax EXPAN~LO) if -T< EXFAN~LC,)<T (6) 

-T ifEXPAhY&) < -T 

The image i __ 1: which is obtained by non-linear op 
eration, has high frequency components than the 
sampling rate. 



Step 3 We create i-1 by Laplacian filtering the i-r 
to reshape the new transients so they have the de 
sired spatial frequency components 

L-1 =i-* - w*i-1. (7) 

Since, we guess that a higher frequency component L- 1 

preserves the shape and the phase of Lo, and L-1 is 
approximated by L-1 which is obtained by the above 

approach. 
In the following, the experiment with one dimen- 

sional step signal is discussed. Fig.la illustrates the 
ideal signal G- 1, the expanded signal EXPAND(Go), 

and the predicted signal by Greenspan’s method (step 
l-3). Fig.lb illustrates the Laplacian components L-1, 

l$XF!!D(L~), and L-1 similarly. We can verify that 

Lpl has the same ZC with L1 and sharpens the wave- 
form of ExpAND(Lo) from Fig. lb. However, the value 
of ‘7”’ and “a” in Eq. 6 are different in each image and 
obtained empirically. 

3 Enlargement Neural Network 

We can express above Greenspan’s non-linear scheme 

as partly connected feedforward three layer neural net- 
work(NN). 

L = G, - EXPAVD(G,+1) 

M G,-W*G, (8) 

EXPAND&J M ExpAND(G,) - W&XPAN~GJ 

= (1- W)*EXPAV~G,) 

= 4 x (1- W)*W*GO, (9) 

Step 1 of Greenspan’s method (i. e., Eq. 9) is realized 
by between input layer and hidden layer. Step 2 of 
Greenspan’s method is carried out the non-linear func- 

tion of nodes in hidden layer. The high frequency com- 
ponents L, is extracted between hidden layer and out- 
put layer (i.e., L, = L, - W*L,). Then, L, is obtained 
from the NN’s output layer. 

There are linear nodes in the input and the output 
layer. Since the weight function W is 5 x 5 window, 
we need 5 x 5 nodes in the hidden layer for getting one 
output from the output layer. We also need twice Gaus- 
sian filtering in Eq. 9. We accordingly set to 13 x 13 

the number of nodes in the input layer. Thus, the three 
layer NN consists (input nodes, hidden nodes, output 
nodes) = (13x 13, 5x5, 1). We denote the relations 
among input layer input “Ij” , hidden layer output 
“Hj” and output layer output "0". 
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Figure 1: Ideal and enlarged signals, in case of (a) ideal 

G-1, =pmD(G), and Greenspan’s method; lb) ideal 

Lr, EXPAND(~), and Greenspan’s method L-1. 

Hj = f(uj) (11) 

0 = FWiHi (12) 
j=l 

Where “f(s)” is presented by 

f(s) = BOUND(x). (13) 

The enlargement NN is trained in order to minimize 
the mean square error (MSE.) between teaching signal 
L, and NN output 0 by 

minimize:J(wl, w2) = E[{O - L,}2]. 

w1 and w2 are the weight vectors which consist of w;~ 



and wj. Initial value of weights are set to an equal 
value with Greenspan’s method. 
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4 Simulation Results 

4.1 One Dimension Signal 

Here, we apply the enlargement NN to the same sig- 

nal as Fig.1. Fig.2 illustrates the ideal signal, the cubic 
convolution signal, the expanded signal by Greenspan’s 
method, and the expanded signal the proposed NN. We 
would recognize that the enlargement NN produces the 
Laplacian component which is the most close to the 

ideal one from Fig.2b. The enlargement NN can nat- 
urally restructures the sharper edge than Greenspan’s 
method (Fig.2a). This shows that the enlargement NN 
is the network which achieves to restore the lost high 
frequency components at downsampling and gets the 
optimum condition of Greenspan’s method. It is good 
result of cubic convolution, but it does not have enough 
high frequency components than even Greenspan’s method. 

4.2 Two Dimension Signal 

We apply the enlargement NN to enlarge an image. 
We show the robustness of the proposed NN following 
3 points of view. 

1. The enlargement NN is constructed with inde 
pendence from levels of a Laplacian pyramid repre- 
sentation. 
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2. The enlargement NN is constructed with inde 
(b) 

pendence from different kinds of images. Figure 2: Ideal and enlarged signals, in case of (a) ideal 

3. The enlargement NN is constructed with inde- 
pendence from reduction procedures, which are gen- 
erally unknown, to get the low resolution image 
from the high resolution image. Here we assume 
that it is Gaussian filtering then downsampling as 
the reduction procedure. 

We now examine the point 1. We calculate six enlarge- 
ment NNs with “Lena” and “Boat” as follows: 

NN-1L: input image: Lena f$, teaching image:Lo 

NN-2L: input image: Lena CY$, teaching image:Ll 

NN-3L: input image: Lena G$‘, teaching image:12 

NN-1B: input image: Boat q, teaching image:Lo 

G-1, EXPAND(Gl, Greenspan, and the NN; (b) ideal 
L-1, Greenspan’s L&, the NIV. 

We enlarge images (from Gs to G2, from G2 to G1, 
and from G1 to GO of “Lena” and “Boat”) by six en- 
largement NNs trained different levels. Table 1 shows 
the resulting MSEs between the desired image and the 

enlargement images. PSNR in Table 1 is given by 

PSNR = 10 * log MSE (255)2 [dB]. (14) 

It is seen that the three enlargement NNs give similar 

results in the MSE, and hence we recognize that the en- 
largement NNs is constructed with independence from 
levels. 

NN-2B: input image: Boat G$‘, teaching image: L 1 

NN-3B: input image: Boat G$, teaching image:L:! 

In the following, we examine the point 2. Here, we 

enlarge the images from G1 to GO of “Lena”, “Girl”, 
“Boat”, “Light House”, and “Building” by using the 



NN-1L. Table 2 shows the resulting MSEs by the NN- 
lL, Greenspan’s method and cubic convolution inter- 
polation(CC1). Excellent enlarged images are obtained 
by the NN-1L at all examples. Comparing the NNs 
with CCI, the NNs show better results of 1.2dB about 

“Light House” and 2dB about the others. We would 

like to show that the enlargement NN is constructed 
with independence from different kinds of images. 

Also we show the subjective evaluation in Fig.3 
which show the result of enlarged images of ‘rBoat’r 

by the NN-1L. Fig.Sa shows the desired image. From 
Fig.3, the proposed NN recover the high-frequency com- 
ponents which were lost by sampling. 

At last, we examine the point 3. In this paper, we 
assume that there is Gaussian filtering and downsam- 

pling as the reduction procedure. However, we can not 
generally know how to be reduced images, then we show 
the NN’s characteristic by reduction processes. Here, 
we use three kind of it, which is a) Gaussian filtering 
and downsampling (GF), b) 3 x 3 mean value filter- 

ing and down sampling (AF), and c) cubic convolution 
filtering and downsampling (CC). We expand reduced 
images of “Boat” and “Light House”, which have dif- 
ferent reduction procedure, by the NN-lL, Greenspan’s 
method, and CCI. Table 3 shows the resulting MSEs by 
the NN-lL, Greenspan’s method and CCI. Reducing by 

GF and AF, the NN-1L has the best results than the 
other expand procedures. However, reducing by CC, 
Greenspan’s method and CC1 has desired results than 
the NN-1L numerically. To be obviously the causes, we 

show the subjective evaluation of expanded images by 
the NN-1L and CC1 in Fig.4. In Fig.4, we recognize 
that the edge and detail signals are enhanced by the 
NN-1L. Cubic convolution function has superior fre 
quency characteristic near Nyquist frequency to Gaus- 
sian filter, then we consider that the NN-lL, which is 
taught by Gaussian filtered image, enhances high fre- 
quency components more than we expect. However? 
the fine lines as wire at the enlarged image by the NN- 
1L are more sharper than one of CCI, and thereby we 
would recognize the increase of resolution by the NN- 
1L with independence from reduction procedures. 

5 Conclution 

This paper presents a procedure for predicting a 

higher-frequency component than the sampling rate 
would allow. This NN is general three layer NN, and 
contains Greenspan’s algorithm which predicts higher 
level Laplacian image by using the Laplacian pyramid. 
Excellent enlarged images are obtained by the enlarge- 

ment NN. Furthermore, the characteristics of the en- 
largement NN are not depended on types and levels of 

Table 1: The compare the enlargement NNs con- 
structed by different levels. (MSE (PSNR[dB])) 

Lena G1 to Go Gz to G1 GB to G2 

NN-1L 75.9(29.3) 38.4(32.3) 46.6(31.4) 

NN-2L 76.3(29.3) 35.0(32.7) 44.9(31.6) 

NN-3~ 79.3(29.ij 39.2(32.2) 40.9i32.oj 

Boat G1 to Go G2 to GI Gs to Gz 

NN-1B 63.8(30.1) 47.1(31.4) 54.0(30.8) 
NN-2B 67.5(29.8j 43.9(31.7j 51.6(31.Oj 

NN-3B 74.0(29.4) 50.5(31.1) 49.3(31.2) 

Table 2: Enlargement results of “Lena” ! “Boat”: 

“Girl”, “Light House”, and “Building” from G1 to GO. 

(MSE (PSNR[dB])) 

enlarge\image Lena Boat 

cc1 115.7(27.5) 102.5(28.0) 

Greenspan 106.4(27.9) 90.0(28.6) 

NN-1L 1 75.9(29.3) 65.3(30.0) 

Girl ] Light House ] Building 

I 44.9f31.61 I 286.4t23.61 ] 96.U28.3) 

46.3(31.5j 254.5(24.1j 89.7(28.6j 

28.1t33.6) 217.8(24.8) 55.8(30.7) 

(4 (b) 

(4 

Figure 3: Ideal and enlarged images; (a)original, 

(b)CCI, (c)Greenspan, (d)NN. 



training image so much. 

Table 3: Enlargement results from various reduced im- 

ages. (MSE (PSNR[dB]) ) 

Boat GF AF cc 
cc1 102.5(28.0) 89.2(28.6) 74.3(29.4) 

Greenspan 90.0(28.6) 84.4(28.9) 70.9(29.6) 

NN-1L 65.3(30.0) 70.2(29.7) 129.3(27.0) 

Light H. GF AF cc 

cc1 286.4(23.6) 265.3(23-g) 228.1(24.5) 

Greenspan 254.5(24.1) 248.2(24.2) 226.9(24.6) 

NN-1L 217.8(24.8) 225.4124.6) 297.5t23.4) 

(b) 

(4 
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