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ABSTRACT 

In this paper, we propose a spatially adaptive image 
restoration algorithm, using local statistics. The lo- 
cal variance, mean and maximum value are utilized 
to constraint the solution space. These parameters 

are computed at each iteration step using partially re- 
stored image. A parameter defined by the user de- 
termines the degree of local smoothness imposed on 
the solution. The resulting iterative algorithm exhibits 

increased convergence speed when compared with the 
nonadaptive algorithm. In addition, a smooth solu- 
tion with a controlled degree of smoothness is obtained. 
Experimental results demonstrate the capability of the 

proposed algorithm. 

1. INTRODUCTION 

When an image is formed or recorded by an imag- 
ing system, the image may be degraded due to uni- 
form motion, defocusing, long-term atmosphere turbu- 

lence, or any combination of them. The blurred image 
may be more seriously degraded by the additive noise 
which comes from the image formation process, trans- 
mission medium, recording process, or any combination 
of them. 

A typical degradation model is of the form [2, 61 

y=Dz+n, (1) 

where the vectors y, Z, n are of size MN x 1, and repre- 
sent the lexicographically ordered observed image, orig- 

inal image, and the additive noise, respectively, of size 
M x N . D is the degradation matrix of size MN x MN 
which may represent a spatially invariant or spatially 
varying point spread function. 

Least-squares regularization has been used for ob- 
taining solutions to Eq. (1). According to the regular- 
ization approach, the following functional is minimized 
with respect to 2 [2, 71 

Mb) = IIY - W2 + 41C412, (2) 

where cr, the regularization parameter, controls the 
trade-off between fidelity to the dat.a and smoothness, 
and C represents typically & high pass operator. 

The prior knowledge used in the formulation repre- 
sented by Eq. (2) is that the original image is smooth. 
Since such knowledge constraints the solution space, 
meaningless solutions can be avoided. However, this is 
a global requirement and therefore not very effective 
in terms of local smoothness. The solution of Eq. (2) 
represents a spatially invariant filter. 

In this paper, an adaptive image restoration algo- 
rithm using local smoothing constraints is proposed. 

We follow the formulation represented by Eq. (2) and 
propose to bring knowledge about the local properties 
of the original image into the restoration process, so 
that prior knowledge and the spatial adaptivity are in- 
corporated on the solution. The basic idea is t.o con- 

strain locally the range of values the restored image 
can take, leading to increased convergence speed of the 

iterative algorithm and signal t,o noise ratio (SNR) im- 
provement. The proposed algorithm differs from all 
other spatially adaptive restoration algorithms proposed 
in the literature (for a review see [6, 31). 

This paper is organized as follows. In section 2, 
the iterative regularized image restoration is reviewed. 
The proposed spatially adaptive image restoration al- 
gorithm is described in section 3. Experimental results 
are presented in section 4, and finally conclusions are 
reached in section 5. 



2. BACKGROUND 

The steepest descent iteration with a constant step size 
(equal to 1) applied to (2) results in 

xk+l = xk + [DTy - (DTD + dTC)xk] = TXk. (3) 

There exist various ways for determining the regu- 
larization parameter cr [4]. According to [5], the regu- 
larization parameter is determined by partially restored 
image at each iteration step, 

where 0 > 2]]y]12. 

Constraints can be imposed on the partially re- 
stored image and can be incorporated into equation 
(3). That is, iteration (3) takes the form 

ik = Pxk, 

zk+l = Ti& = TPxk, 

(5) 

where P denotes a projection operator (or concatena- 
tion of operator) of a signal onto a set of signals with 
desirable properties. 

3. ADAPTIVE IMAGE RESTORATION 
ALGORITHM USING LOCAL 

CONSTRAINT 

In this section, we describe a way to choose a set onto 
which the partially restored image in Eq. (3) is pro- 
jected. In order to define local smoothing constraint, 
it is necessary to determine the parameters which de- 
scribe the local properties of an image. In our work, we 
use the local variance for local spatial activity and local 
maximum intensity value. For the image Xk(i, j), the 

local mean mZr. (i, j) and the local variance ozr. (i, j) at 
coordinate (i, j) are defined by 

(6) 

m=i-(J n=j-V 

where K-l = (2U + 1)(2V + 1) is the extent of the 
analysis window which is symmetric about the point 
(i, j). The local maximum Value, zk,maz (i, j), is simply 

defined as 

where Si:j represents the support region for determin- 

ing the local maximum value at (i,j). In the exper- 
iments, it is the same with analysis window used for 
local mean and variance computation. 

From Eqs. (7) and (8), t.he projection operator P 
to the set expressing local smoothness is defined as 

if Xk(i,j) < 77&(&j) - L. B(i,j); 

p(xk(i,j)) = 

1 

mz, C&j) + L . B(i, j) 

if Xk(i,j) > mz,(i,j) f L. B(i,j), 
Xk(i,j) otherwise, 

(9) 
where L is a threshold to be determined and B(i,j) is 

2 
equal to Zh+os(i”). Smaller B(i, j) represents tighter uir (id 
bound for flat regions, resulting in an oversmoothed 
image with most of the noise removed (the blur does 
not change much the flat regions of th image), while 
larger B(i,j) (looser bound) for high activity. This is 
in agreement with the noise masking property in areas 

of high spatial activity of the human visual system [I]. 

4. EXPERIMENTAL RESULTS 

n our experiments, we used the 256 x 256 pixels lena 
image. The original image is degraded by 7x7 uni- 
form motion blur and by 10 dB Gaussian noise. The 
degraded image is shown in Fig. 1 We tested the pro- 
posed algorithm for various signal to noise ratios (SNR) 
and images. For evaluating the performance of the al- 
gorithm, the improvement in SNR (dB) was utilized. 

It is defined at the lath iteration step by 

IIY - XII2 
*SNR = lol%,o ,lxk _ xl 12. 

The criterion 

was used for terminating the iteration. 

For L = 0.001, the proposed algorithm converges af- 
ter 9 iterations (ASNR = 3.05), while the nonadaptive 
algorithm after 74 iterations (ASNR = -4.57). Figs. 2 
and 3 show the restored images by iterations (3) and 
(9) with the use of (4). When tighter bounds (smaller 
L) are used, the convergence becomes faster. However, 
the tighter bounds result in oversmoothcd images. On 

the basis of our experiments, 0.01 5 L 5 0.0001 is a 
good range with respect to convergence speed and per- 
formance. Figures 4 and 5 show the pixels outside and 
inside the region defined by the bounds in Eq. (9). 
Black pixels denote the location where the intensity 



values are below the lower threshold, white pixels the 
location where the intensity values are above the up- 
per threshold, and gray pixels the location where the 
intensity values are in between the two bounds. Clearly 

by comparison Figs. 4 and 5 considerably more pixels 
do not satisfy the constraint at the beginning of the 
iteration than at convergence. Figs. 6 and 7 respec- 
tively shows comparison of the convergence rates and 
the mean squared error between the nonadaptive and 
adaptive algorithms. 

5. CONCLUSIONS 

In this paper, we propose an adaptive iterative regular- 
ized image restoration algorithm using local smoothing 
constraints. Each pixel in an image is projected onto 

local smoothing set which is determined by the local 
mean, variance, and maximum intensity value of the 
partially restored image. These parameters are utilized 
in defining the convex set. We are currently investigat- 
ing the use of the local smoothness constraint in the 
blind deconvolution problem. 
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Figure 1: Noisy blurred image (7x7 uniform 
dB Gaussian noise) 

blur, 10 

Figure 2: Restored image by nonadaptive approach; 74 
iterations, ASNR = -4.57 dB 

Figure 3: Restored image by proposed algorithm; 9 
iterations, ASNR = 3.05 dB 



Nonadaptive approach 

Adoptive opproc~ch - - - - 

Figure 4: Black pixels : intensity below the lower -77 
bound ; white pixels : intensity above the upper bound o 20 40 60 80 100 

; gray pixels ; intensity between the bounds of Eq. (9) 
; iteration 1 

Iteration nurrber 

Figure 6: Comparison of convergence rates 

Figure 5: Black pixels : intensity below the lower 7.0- . 
bound ; white pixels : intensity above the upper bound o 20 40 60 80 100 

; gray pixels ; intensity between the bounds of Eq. (9) Iteration number 

; iteration 9 

Figure 7: Mean squared error comparison 


