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ABSTRACT 

An adaptive algorithm for generating optimal stack 
filters is presented. The algorithm is iterative and 
highly parallel. The algorithm is summarized, its time 
complexities are analyzed, and implementation details, 
such as data distribution and communication patterns, 
are described including performance resu1t.s from an im- 
plementation on a 16K processor MasPar MP-1 SIMD 

computer. 

Threshold decomposition allows analysis of a digi- 
tal filter to be broken down into its binary threshold 
components. Let. XI be defined as the binary image ob- 
tained by thresholding the image X at level 1. Let Tl(.) 
denote this thresholding operator, so that xl = Z’l(X). 
Each binary pixel of the image is denoted xl (i, j), where 
i,j are the coordinates of the binary pixel on the lth 
threshold level. Therefore X(i, j) and z:l(i,j) are re- 
lated such that 

1. INTRODUCTION 

Xl(i,j) = 
1, if X(i,j) 2 1 
0, otherwise. 

Stack filters are a class of sliding window, nonlinear 
filters. One of the main strengths of stack filters is the 

existence of an analytical technique for determining a 
stack filter which is optimal for estimation under the 
mean absolute error criterion [4, 51. Although these 
results provide a systematic approach for designing an 
optimal stack filter, knowledge of the joint threshold 
crossing statistics of the signal and noise processes is 
required. Such knowledge is rarely available in practice, 
particularly in image processing applications. 

In this manner, X is the sum of its individual thresh- 
olded component levels: 

x = FX[ = -$TI(X), 
kl l=l 

where M is the number of quantization levels of X. A 
windowed section, W, of the image may be similarly 
defined, and possesses the same decomposition proper- 
ties: 

M M 

To alleviate these problems, adaptive stack filter 
training algorithms were developed. With these al- 
gorithms, an optimal stack filter can bc determined 
via observations of training sequences. Their principal 
limitations are their excessive computational complex- 
ity and lack of significant parallelism. These factors 

prevent both quick generation of stack filters and any 
significant speedup from execution on highly parallel 

computers. 

W[i,j] = CZ(W[i,j]) = zwr[i,j] 
kl I=1 

where ‘w[ [i, j] = Tl (W [i, j]) is the binary array obtained 
by thresholding the pixels in window W [i , j] , referenced 
at the coordinates i, j, at level 1. 

Stack filters are defined by two properties: the weak 
superposition property known as the threshold decom- 
position property, and an ordering property known as 
the stacking property [7]. 

The stacking property imposes an ordering condition 
onto the filter’s output. In general, the stacking prop- 
erty requires that for any stack filter binary output 

equal to 1 at threshold level 1, all outputs on the lev- 
els below (less than) I must also be 1 for that window 
position. The stacking property is defined as a par- 

tial ordering of arrays, where wl[i, j] stacks on top of 
~1-1 [i, j] if every element wr[i, j] is less than or equal to 
the corresponding element in ~1-1 [i, j]. In other words, 
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Note that this is a partial ordering since not all binary 
patterns are related in this manner. 

A common measure for stack filter evaluation is the 
mean absolute error (MAE) criterion. The MAE cri- 
terion is determined by comparing the out.put X(i, j), 
which is the filter’s estimate of X(i, j), based on the 
windowed observation W[i, j] so that 

MAE = E [IX(i, j) - k(i, j)l] 

The filter generating the X(i, j) that minimizes the 
MAE is the optimal stack filter [4, 51. 

2. ALGORITHM 

Our training algorithm and its subroutines are pre- 
sented in Figures 1 and 2. The training algorithm 
TRAIN takes as input parameters the original image, 
Xorig, the corrupted image, Xc”‘, the window size and 

shape, n, and the images’ size, x and y, and depth, Z. 
The bulk of the computation occurs in the three sub- 
routines DETERMINE-D@, STACK, and THRESHOLD. 

TRAIN(X orig, xcorr, 72, x, y, z) 
1 D”Ptt DETERMINE-D~P~(X~~~~,X~~~~,~,X,~,Z) 
2 kt0 
3 Dck)t6 
4 fi@)+D(k) + DoPt 

5 D(k+l)t STACK(~~(~), n) 
6 if D(“+l) has not converged 
7 then inc( k) 
8 got0 Step 4 

9 S+THRESHOLD(D(k+l),n) 
10 ‘return S 

Figure 1: Stack filter training algorithm. 

2.1. Analyses 

TRAIN begins by determining the optimal decision vec- 
tor D”pt , and initializing the constrained decision vec- 
tor’(a decision vector constrained to obey the stacking 
property), Dck). TRAIN then iterates on Dck) until 
it has adequately converged. Step 4 updates D(“) by 
adding D Opt to create the unconstrained decision vec- 
tor fitk). Step 5 enforces the global stacking property 
on fick) to produce D ck+l). If the MAE of Dck+‘) 
has suitably converged then D(“+l) is thresholded and 
returned; otherwise another iteration begins. A proof 
that TRAIN converges to the optimal stack filter is given 

in [S]. 

DETERMINE-D~P~(X~'~~,X~~~~,~,Z,~,Z) 

1 D”Ptt6 
2 for it1 to 2 
3 do for jtl to y 
4 do for each threshold level 1 

5 do if wrTig(i, j) 2 wfOrr(i, j) 

6 then inc(d$,,(i,j,) 

7 else dec(d~$..,ci,j,) 

8 return D”pt 

STACK(D,~) 
1 i=l 
2 while i 5 2’+’ 
3 do for jt0 to 2” - 1 by 2i 
4 do for kt0 to i - 1 
5 do if dk+j > di+j+k 

6 then dj+k t Ldj+fi+Zdi+j+‘] 

7 di+j+k+I dj+k+di+j+k 2 1 
8 it2i 
9 return D 

THRESHOLD(D,~) 
1 for it0 to 2n - 1 
2 do if di 2 0 
3 then ditl 
4 else d+O 
5 return D 

Figure 2: TRAIN algorithm subroutines. 

The algorithm’s operation is illustrated geometri- 
cally in Figure 3. Steps 4-8 in TRAIN iteratively up- 

dates the current decision vector and then enforces the 
stacking property. This may be viewed as a series of 
repeated approximations to force the direction of the 
current constrained decision vector to converge towards 
the direction of the optimal decision vector. Step 4 
moves Dtk) towards D”pt, but may create stacking vi- 
olations in Bck). Step 5 must resolve these violations 
while leaving D ck+l) closer to D”pt than Dck). 

2.2. Data Representation and Distribution 

The PRAM and MP-RAM parallel models [l] are used 

in this paper’s time complexity analysis. Two MP- 
RAM interconnections are assumed; an all-to-all (cross- 
bar) connected network, and a NEWS mesh connected 
network. These are illustrated in Figure 4. 

The original and corrupted images are stored as bi- 
nary encoded data. Each decision variable is repre- 
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sented as an integer; hence, the decision vectors, D”pt 

Figure 3: Training algorithm operation. 

and Dk, each require 2” integers. Hence, for the MP- 
RAM models, images and decision vectors may either 
be partitioned across the processors or duplicated in 
each processor’s local memory. In practice sufficient 
memory may not exist to store the entire decision vec- 
tor in local memory. The choice of data distribution 
on the MP-RAM may affect the performance of the 
algorithm, as described later in section 3.2. 

2.3. Time Complexity 

This section analyses the efficiency of TRAIN by mea- 
suring the time rate of growth to train a stack filter 

for a given image pair and window size. The nota- 
tion o(n) will be used with the following definition. 
@(g(n)) = f(n): Th ere exist constants cl, c2 such that 
for all 12, 0 < clg(n) < f(n) < czg(n). See [3] for more 
information on asymptotic notation. 

Steps 2 and 7 of TRAIN simply set and increment the 

iteration counter variable, and each have time complex- 
ity O(1) for both serial and parallel models. 

DETERMINE-D@ first initializes all 2n decision vari- 

ables, qpt, in D”Pt to 0; this requires 0(2n) opera- 
tions. The operations are independent of each other, 
so the parallel time complexity is O( 5) for both the 

PRAM and MP-RAM models. The remainder of the 
subroutine compares each pixel’s windowed threshold 
level, wl[i, j], in the corrupted image to the original. 
For a binary encoding, where each of the x x y pix- 
els may take on any value from 0.. .2’ - 1, this re- 
quires z x y x (2zlg(z) + n2) observations, and either 
an increment or decrement to the appropriate decision 
variable. The thresholding details are omitted here 
for brevity. Each observation and update is indepen- 
dent of the others, so the complexity of Steps 3-7 is 

O(zy(2z lg(z) + n2)) on a RAM, and O( sy(2r’gp(Z)+n2)) 

MP-RAM 

I p x p Crossbar Switch 
I 

m m . . . . . (+iJ 
(b) 

MP-RAM 

(cl 

Figure 4: The three parallel computation models con- 
sidered: (a) PRAM, (b) MP-RAM with an all-to-all 
interconnection, (c) MP-RAM with a mesh intercon- 
nection. 

on both PRAM and MP-RAM mode1s.l Assuming that. 
2n >> zy(2alg(z) + n2), then the time complexity of 
DETERMINE-D@ is 0(2n) on a RAM, and O(%) on 
the PRAM. The individual decision variables in each 

PE’s local memory must be combined in MP-RAM 
memory. If each decision variable is combined across 

the PEs, then placed in its assigned PE’s memory; 
this requires 0 (lg(p) ) communications and computa- 
tions for each decision variable. The time complex- 
ity of DETERMINE-D Opt on an MP-RAM is therefore 
O( 5 + 2n lg(p)) = O(2” lg(p)). 

STACK operates on the unconstrained decision vec- 
tor, filk), so its complexity is a function of the 2n de- 

‘The time for MP-RAM interprocessor communications to 
transfer a window’s overlapping pixels between processors is 
omitted in this analysis. 
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Figure 5: Three steps, each parallel, to enforce the 
stacking property for window size n = 3. 

cision variables composing B)(k). The bulk of the com- 
putation occurs in Steps 6-7, within the triply nested 
loop. Step 2 will iterate n times. The number of it- 

erations performed by Steps 3-4 is a function of the 
iteration variable i. Consider then for each iteration of 
Step 2, each pair of decision variables in D)(k) must be 
examined; this requires 2”-’ operations. Whether or 
not a stacking violation is found, each decision variable 
pair must be examined in Step 5. Hence the time com- 
plexity of STACK is 7~2~~~ or O(n2n) on a RAM. On a 
PRAM Steps 3-4 are fully parallelizable, so the PRAM 

complexity is O(% ). Parallelizing the stacking cor- 
rections on an MP-RAM requires data movements be- 
tween processor pairs sending and receiving decision 

variables to be compared. This requires [F] x (n- 1) 
parallel message exchanges, so the MP-RAM complex- 

ity is O([c](n - 1) + c) or Q(T). Figure 5 
illustrates t K e three paralle P steps in STACK required 

to impose the stacking property onto a decision vector 
for a window size n = 3 filter. 

THRESHOLD simply rescales the decision vector to 
a binary vector; the resulting binary vector is the final 
stack filter. Every decision variable is examined and set 
to 1 if greater than or equal to zero, or 0 if less than 
zero. No interprocessor communications are required, 
so the RAM, PRAM, and MP-RAM time complexities 
are 0(2n), O( $): and O( 5)) respectively. 

The time complexity of TRAIN is summarized in Ta- 
ble 1. As long as the number of iterations performed in 
TRAIN is much less than 2n, which we have observed 
to be the case in practice, the asymptotic complexities 
are not affected by the number of iterations performed 
(though the execution time may certainly be). 

Table 1: TRAIN time complexity. 

3. IMPLEMENTATION 

3.1. The MasPar MP-1 

The MasPar MP-1 [2] SIMD computer operated by 
Purdue University’s Parallel Processing Laboratory is 
configured with 16,384 processor elements (PEs). The 
data parallel unit includes the array control unit, PE 
array, and communication mechanisms. Each PE has 
16 Kbytes of RAM available. The PE array is a 2D ma- 
trix representation of all the PEs in the system. A sys- 
tem has lK, 2K, 4K, 8K, or 16K PEs that are arranged 
in a matrix with either an equal number of columns 
and rows or one that has twice as many columns as 

rows. The PEs a.re arranged in clusters of nonoverlap- 
ping 4 x 4 matrices of 16 PEs and 16 processor memories 
per cluster. 

le+06 
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Figure 6: MAE and training time plotted as a function 
of windows size for e&stein and einsteinI images. 

Figure 6 is a plot of the MAE for stack filters gen- 
erated with TRAIN for window sizes ranging from 9 

to 25, and their corresponding training times. MAE 
decreases somewhat linearly, while their corresponding 



training times increase somewhat exponentially, with 
increasing window size. 

3.2. Decision Variable Observations 

Two issues, regarding the relative sizes of the images 
used to train the filter and the size of the filter window, 
affected both the implementation of the algorithm and 
the performance of the algorithm on the MasPar. For 
example, training a 5 x 5 pixel filter for a 512 x 512 x8 bit 
image yields a decision vector with 225 = 33,554,432 

decision variables while 512 x 512 x 28 = 67,108,864 
windowed threshold levels will be observed (or fewer, 

when excluding image border pixels). Our experiments 
revealed many stacking violations in D0Pt for this case. 
Furthermore for the 512 x 512 x 8 bit e&stein images 
training a 5 x 5 filter, only 1,762,593 unique decision 
variables were observed. On the other hand, training 
a 3 x 3 pixel filter on the same image yields a decision 
vector composed of 2g = 512 decision variables. For 
the 256 x 256 x 8 and 512 x 512 x 8 size images we 
examined, D”pt possessed no stacking violations for the 

3 x 3 window size. 

Our experiments support the interpolation between 
these two data points. When the decision vecbor is un- 

derobserved (decision variables are not observed when 
determining D”pt) many stacking violations result in 
D”pt, while the converse (all decision variables are ob- 
served when determining D”pt) results in few if any 
stacking violations in Dept. If D”pt possesses no stack- 
ing violations, DOPt corresponds to the optimal stack 

filter, and TRAIN converges after one iteration. If D”pt 
possesses many stacking violations, the optimal stack 
filter differs significantly from D”pt and many iterations 
are required to converge to the optimal constrained de- 

cision vector. 
Also the most efficient manner of combining the indi- 

vidual PE observations into D”pt on an MP-RAM may 
vary depending on whether DOPt is underobserved. For 
example, if D”pt is fully observed, each decision vari- 

able may be combined and placed into its respective 
PE’s memory. If D”pt is largely underobserved, this 
will result in few processors doing useful work in the 
combining process, because most decision variable val- 
ues will be zero. In this case, having each processor 
with an observed decision variable send its value to the 

destination processor which then sums its value may 
be more efficient. This proved to be the case on the 
MasPar. 

Finally if D”pt is largely underobserved, memory 

space may be saved by using a hash table to represent 
Dept. This would reduce the data space requirements 
by almost 128 Mbytes when training a 25 pixel filter 
and D”pt is represented as an int array, while increas- 

ing access times to D Opt by a constant factor. This 

technique was not implemented in our experiments. 

4. CONCLUSIONS 

Because the operations on the training images and D”pt 
are largely independent, and because the size of the 
training images and D Opt are fairly large, a great deal 

of parallelism may be exploited in TRAIN. The bulk 

of the computation for large filter sizes occurs in the 
repeated calls to the STACK subroutine. The MasPar 
MP-1 computer proved to be an acceptable platform 
for implementing TRAIN, with all processors enabled 
for much of the algorithm when training filters of size 
15 and greater. Finally the relative sizes of the training 
image and the filter window significantly affects both 
the performance and implementation of the algorithm, 
in terms of the number of iterations required to con- 
verge to the optimal stack filter, the method of com- 

bining D”pt on an MP-RAM multiprocessor, and the 
data representation of D”pt . 
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