
SYNTHESIS OF A PARALLEL, OPTIMAL STACK FILTER TRAINING
ALGORITHM

Kelvin L. Fong, George B. Adams III, Edward J. Coyle

School of Electrical and Computer Engineering

Jisnng Yoo

Electronics Dept., Hallym University
Purdue University 1, Okcheon-Dong

West Lafayette, IN 47907 Chuncheon, KOREA
{kelvin, gba, coyle}@purdue.edu jsyoo@sun.hallym.ac.kr

ABSTRACT

An adaptive algorithm for generating optimal stack
filters is presented. The algorithm is iterative and
highly parallel. The algorithm is summarized, its time
complexities are analyzed, and implementation details,
such as data distribution and communication patterns,
are described including performance resu1t.s from an im-
plementation on a 16K processor MasPar MP-1 SIMD

computer.

Threshold decomposition allows analysis of a digi-
tal filter to be broken down into its binary threshold
components. Let. XI be defined as the binary image ob-
tained by thresholding the image X at level 1. Let Tl(.)
denote this thresholding operator, so that xl = Z’l(X).
Each binary pixel of the image is denoted xl (i, j), where
i,j are the coordinates of the binary pixel on the lth
threshold level. Therefore X(i, j) and z:l(i,j) are re-
lated such that

1. INTRODUCTION

Xl(i,j) =
1, if X(i,j) 2 1
0, otherwise.

Stack filters are a class of sliding window, nonlinear
filters. One of the main strengths of stack filters is the

existence of an analytical technique for determining a
stack filter which is optimal for estimation under the
mean absolute error criterion [4, 51. Although these
results provide a systematic approach for designing an
optimal stack filter, knowledge of the joint threshold
crossing statistics of the signal and noise processes is
required. Such knowledge is rarely available in practice,
particularly in image processing applications.

In this manner, X is the sum of its individual thresh-
olded component levels:

x = FX[= -$TI(X),
kl l=l

where M is the number of quantization levels of X. A
windowed section, W, of the image may be similarly
defined, and possesses the same decomposition proper-
ties:

M M

To alleviate these problems, adaptive stack filter
training algorithms were developed. With these al-
gorithms, an optimal stack filter can bc determined
via observations of training sequences. Their principal
limitations are their excessive computational complex-
ity and lack of significant parallelism. These factors

prevent both quick generation of stack filters and any
significant speedup from execution on highly parallel

computers.

W[i,j] = CZ(W[i,j]) = zwr[i,j]
kl I=1

where ‘w[[i, j] = Tl (W [i, j]) is the binary array obtained
by thresholding the pixels in window W [i , j] , referenced
at the coordinates i, j, at level 1.

Stack filters are defined by two properties: the weak
superposition property known as the threshold decom-
position property, and an ordering property known as
the stacking property [7].

The stacking property imposes an ordering condition
onto the filter’s output. In general, the stacking prop-
erty requires that for any stack filter binary output

equal to 1 at threshold level 1, all outputs on the lev-
els below (less than) I must also be 1 for that window
position. The stacking property is defined as a par-

tial ordering of arrays, where wl[i, j] stacks on top of
~1-1 [i, j] if every element wr[i, j] is less than or equal to
the corresponding element in ~1-1 [i, j]. In other words,

This work was supported by NSF Grants CDA-9015696,
CDA-9422250, and CDA-9617388. wl[i,j]<wl-l[i,j], 1=1,2 ,... M.

Note that this is a partial ordering since not all binary
patterns are related in this manner.

A common measure for stack filter evaluation is the
mean absolute error (MAE) criterion. The MAE cri-
terion is determined by comparing the out.put X(i, j),
which is the filter’s estimate of X(i, j), based on the
windowed observation W[i, j] so that

MAE = E [IX(i, j) - k(i, j)l]

The filter generating the X(i, j) that minimizes the
MAE is the optimal stack filter [4, 51.

2. ALGORITHM

Our training algorithm and its subroutines are pre-
sented in Figures 1 and 2. The training algorithm
TRAIN takes as input parameters the original image,
Xorig, the corrupted image, Xc”‘, the window size and

shape, n, and the images’ size, x and y, and depth, Z.
The bulk of the computation occurs in the three sub-
routines DETERMINE-D@, STACK, and THRESHOLD.

TRAIN(X orig, xcorr, 72, x, y, z)
1 D”Ptt DETERMINE-D~P~(X~~~~,X~~~~,~,X,~,Z)
2 kt0
3 Dck)t6
4 fi@)+D(k) + DoPt

5 D(k+l)t STACK(~~(~), n)
6 if D(“+l) has not converged
7 then inc(k)
8 got0 Step 4

9 S+THRESHOLD(D(k+l),n)
10 ‘return S

Figure 1: Stack filter training algorithm.

2.1. Analyses

TRAIN begins by determining the optimal decision vec-
tor D”pt , and initializing the constrained decision vec-
tor’(a decision vector constrained to obey the stacking
property), Dck). TRAIN then iterates on Dck) until
it has adequately converged. Step 4 updates D(“) by
adding D Opt to create the unconstrained decision vec-
tor fitk). Step 5 enforces the global stacking property
on fick) to produce D ck+l). If the MAE of Dck+‘)
has suitably converged then D(“+l) is thresholded and
returned; otherwise another iteration begins. A proof
that TRAIN converges to the optimal stack filter is given

in [S].

DETERMINE-D~P~(X~'~~,X~~~~,~,Z,~,Z)

1 D”Ptt6
2 for it1 to 2
3 do for jtl to y
4 do for each threshold level 1

5 do if wrTig(i, j) 2 wfOrr(i, j)

6 then inc(d$,,(i,j,)

7 else dec(d~$..,ci,j,)

8 return D”pt

STACK(D,~)
1 i=l
2 while i 5 2’+’
3 do for jt0 to 2” - 1 by 2i
4 do for kt0 to i - 1
5 do if dk+j > di+j+k

6 then dj+k t Ldj+fi+Zdi+j+‘]

7 di+j+k+I dj+k+di+j+k 2 1
8 it2i
9 return D

THRESHOLD(D,~)
1 for it0 to 2n - 1
2 do if di 2 0
3 then ditl
4 else d+O
5 return D

Figure 2: TRAIN algorithm subroutines.

The algorithm’s operation is illustrated geometri-
cally in Figure 3. Steps 4-8 in TRAIN iteratively up-

dates the current decision vector and then enforces the
stacking property. This may be viewed as a series of
repeated approximations to force the direction of the
current constrained decision vector to converge towards
the direction of the optimal decision vector. Step 4
moves Dtk) towards D”pt, but may create stacking vi-
olations in Bck). Step 5 must resolve these violations
while leaving D ck+l) closer to D”pt than Dck).

2.2. Data Representation and Distribution

The PRAM and MP-RAM parallel models [l] are used

in this paper’s time complexity analysis. Two MP-
RAM interconnections are assumed; an all-to-all (cross-
bar) connected network, and a NEWS mesh connected
network. These are illustrated in Figure 4.

The original and corrupted images are stored as bi-
nary encoded data. Each decision variable is repre-

D&+1) PRAM

$+I)= ,, WI + ,, OPt

sented as an integer; hence, the decision vectors, D”pt

Figure 3: Training algorithm operation.

and Dk, each require 2” integers. Hence, for the MP-
RAM models, images and decision vectors may either
be partitioned across the processors or duplicated in
each processor’s local memory. In practice sufficient
memory may not exist to store the entire decision vec-
tor in local memory. The choice of data distribution
on the MP-RAM may affect the performance of the
algorithm, as described later in section 3.2.

2.3. Time Complexity

This section analyses the efficiency of TRAIN by mea-
suring the time rate of growth to train a stack filter

for a given image pair and window size. The nota-
tion o(n) will be used with the following definition.
@(g(n)) = f(n): Th ere exist constants cl, c2 such that
for all 12, 0 < clg(n) < f(n) < czg(n). See [3] for more
information on asymptotic notation.

Steps 2 and 7 of TRAIN simply set and increment the

iteration counter variable, and each have time complex-
ity O(1) for both serial and parallel models.

DETERMINE-D@ first initializes all 2n decision vari-

ables, qpt, in D”Pt to 0; this requires 0(2n) opera-
tions. The operations are independent of each other,
so the parallel time complexity is O(5) for both the

PRAM and MP-RAM models. The remainder of the
subroutine compares each pixel’s windowed threshold
level, wl[i, j], in the corrupted image to the original.
For a binary encoding, where each of the x x y pix-
els may take on any value from 0.. .2’ - 1, this re-
quires z x y x (2zlg(z) + n2) observations, and either
an increment or decrement to the appropriate decision
variable. The thresholding details are omitted here
for brevity. Each observation and update is indepen-
dent of the others, so the complexity of Steps 3-7 is

O(zy(2z lg(z) + n2)) on a RAM, and O(sy(2r’gp(Z)+n2))

MP-RAM

I p x p Crossbar Switch
I

m m (+iJ
(b)

MP-RAM

(cl

Figure 4: The three parallel computation models con-
sidered: (a) PRAM, (b) MP-RAM with an all-to-all
interconnection, (c) MP-RAM with a mesh intercon-
nection.

on both PRAM and MP-RAM mode1s.l Assuming that.
2n >> zy(2alg(z) + n2), then the time complexity of
DETERMINE-D@ is 0(2n) on a RAM, and O(%) on
the PRAM. The individual decision variables in each

PE’s local memory must be combined in MP-RAM
memory. If each decision variable is combined across

the PEs, then placed in its assigned PE’s memory;
this requires 0 (lg(p)) communications and computa-
tions for each decision variable. The time complex-
ity of DETERMINE-D Opt on an MP-RAM is therefore
O(5 + 2n lg(p)) = O(2” lg(p)).

STACK operates on the unconstrained decision vec-
tor, filk), so its complexity is a function of the 2n de-

‘The time for MP-RAM interprocessor communications to
transfer a window’s overlapping pixels between processors is
omitted in this analysis.

Step 1

b

Step 2

T,

3

Step 3

6

Figure 5: Three steps, each parallel, to enforce the
stacking property for window size n = 3.

cision variables composing B)(k). The bulk of the com-
putation occurs in Steps 6-7, within the triply nested
loop. Step 2 will iterate n times. The number of it-

erations performed by Steps 3-4 is a function of the
iteration variable i. Consider then for each iteration of
Step 2, each pair of decision variables in D)(k) must be
examined; this requires 2”-’ operations. Whether or
not a stacking violation is found, each decision variable
pair must be examined in Step 5. Hence the time com-
plexity of STACK is 7~2~~~ or O(n2n) on a RAM. On a
PRAM Steps 3-4 are fully parallelizable, so the PRAM

complexity is O(%). Parallelizing the stacking cor-
rections on an MP-RAM requires data movements be-
tween processor pairs sending and receiving decision

variables to be compared. This requires [F] x (n- 1)
parallel message exchanges, so the MP-RAM complex-

ity is O([c](n - 1) + c) or Q(T). Figure 5
illustrates t K e three paralle P steps in STACK required

to impose the stacking property onto a decision vector
for a window size n = 3 filter.

THRESHOLD simply rescales the decision vector to
a binary vector; the resulting binary vector is the final
stack filter. Every decision variable is examined and set
to 1 if greater than or equal to zero, or 0 if less than
zero. No interprocessor communications are required,
so the RAM, PRAM, and MP-RAM time complexities
are 0(2n), O($): and O(5)) respectively.

The time complexity of TRAIN is summarized in Ta-
ble 1. As long as the number of iterations performed in
TRAIN is much less than 2n, which we have observed
to be the case in practice, the asymptotic complexities
are not affected by the number of iterations performed
(though the execution time may certainly be).

Table 1: TRAIN time complexity.

3. IMPLEMENTATION

3.1. The MasPar MP-1

The MasPar MP-1 [2] SIMD computer operated by
Purdue University’s Parallel Processing Laboratory is
configured with 16,384 processor elements (PEs). The
data parallel unit includes the array control unit, PE
array, and communication mechanisms. Each PE has
16 Kbytes of RAM available. The PE array is a 2D ma-
trix representation of all the PEs in the system. A sys-
tem has lK, 2K, 4K, 8K, or 16K PEs that are arranged
in a matrix with either an equal number of columns
and rows or one that has twice as many columns as

rows. The PEs a.re arranged in clusters of nonoverlap-
ping 4 x 4 matrices of 16 PEs and 16 processor memories
per cluster.

le+06

2.0 ' 1 0.01
5 25

Figure 6: MAE and training time plotted as a function
of windows size for e&stein and einsteinI images.

Figure 6 is a plot of the MAE for stack filters gen-
erated with TRAIN for window sizes ranging from 9

to 25, and their corresponding training times. MAE
decreases somewhat linearly, while their corresponding

training times increase somewhat exponentially, with
increasing window size.

3.2. Decision Variable Observations

Two issues, regarding the relative sizes of the images
used to train the filter and the size of the filter window,
affected both the implementation of the algorithm and
the performance of the algorithm on the MasPar. For
example, training a 5 x 5 pixel filter for a 512 x 512 x8 bit
image yields a decision vector with 225 = 33,554,432

decision variables while 512 x 512 x 28 = 67,108,864
windowed threshold levels will be observed (or fewer,

when excluding image border pixels). Our experiments
revealed many stacking violations in D0Pt for this case.
Furthermore for the 512 x 512 x 8 bit e&stein images
training a 5 x 5 filter, only 1,762,593 unique decision
variables were observed. On the other hand, training
a 3 x 3 pixel filter on the same image yields a decision
vector composed of 2g = 512 decision variables. For
the 256 x 256 x 8 and 512 x 512 x 8 size images we
examined, D”pt possessed no stacking violations for the

3 x 3 window size.

Our experiments support the interpolation between
these two data points. When the decision vecbor is un-

derobserved (decision variables are not observed when
determining D”pt) many stacking violations result in
D”pt, while the converse (all decision variables are ob-
served when determining D”pt) results in few if any
stacking violations in Dept. If D”pt possesses no stack-
ing violations, DOPt corresponds to the optimal stack

filter, and TRAIN converges after one iteration. If D”pt
possesses many stacking violations, the optimal stack
filter differs significantly from D”pt and many iterations
are required to converge to the optimal constrained de-

cision vector.
Also the most efficient manner of combining the indi-

vidual PE observations into D”pt on an MP-RAM may
vary depending on whether DOPt is underobserved. For
example, if D”pt is fully observed, each decision vari-

able may be combined and placed into its respective
PE’s memory. If D”pt is largely underobserved, this
will result in few processors doing useful work in the
combining process, because most decision variable val-
ues will be zero. In this case, having each processor
with an observed decision variable send its value to the

destination processor which then sums its value may
be more efficient. This proved to be the case on the
MasPar.

Finally if D”pt is largely underobserved, memory

space may be saved by using a hash table to represent
Dept. This would reduce the data space requirements
by almost 128 Mbytes when training a 25 pixel filter
and D”pt is represented as an int array, while increas-

ing access times to D Opt by a constant factor. This

technique was not implemented in our experiments.

4. CONCLUSIONS

Because the operations on the training images and D”pt
are largely independent, and because the size of the
training images and D Opt are fairly large, a great deal

of parallelism may be exploited in TRAIN. The bulk

of the computation for large filter sizes occurs in the
repeated calls to the STACK subroutine. The MasPar
MP-1 computer proved to be an acceptable platform
for implementing TRAIN, with all processors enabled
for much of the algorithm when training filters of size
15 and greater. Finally the relative sizes of the training
image and the filter window significantly affects both
the performance and implementation of the algorithm,
in terms of the number of iterations required to con-
verge to the optimal stack filter, the method of com-

bining D”pt on an MP-RAM multiprocessor, and the
data representation of D”pt .

PI

PI

[31

PI

[51

PI

171

PI

5. REFERENCES

George S. Almasi and Allan Gottlieb. Highly Paral-
lel Computing. The Benjamin/Cummings Publish-
ing Company, Inc., Redwood City, CA 94065,1994.
T. Blank. “The MasPar MP-1 Architecture” in

Compcon Spting 1990, pp. 20-24, February 1990.
Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. lntrodzlction to Algorithms. The
MIT Press, Cambridge, MA, 1991.
E. J. Coyle and J.-H. Lin. “Stack Filters and the
Mean Absolute Error Criterion” in IEEE Truns. on
Acoustics, Speech, and Signal Processing, vol. 36,
pp. 1244-1254, August 1988.
E. J. Coyle, J.-H. Lin, and M. Gabbouj. “Optimal
Stack Filtering and the Estimation and Structural
Approaches to Image Processing” in IEEE Trans.
on Acoustics, Speech, and Signal Processing, vol.
37, pp. 2037-2064, December 1989.
J.-H. Lin, T. M. Selke, and E. J. Coyle. “Adaptive
Stack Filtering Under the Mean Absolute Error Cri-

terion” in IEEE l+ans. on Acoustics, Speech, and
Signal Processing, vol. 38, pp. 938-954, June 1990.
P. D. Wendt, E. J. Coyle, and N. C. Gallagher,
Jr. “Stack Filters” in IEEE Ram. on Acoustics,
Speech, and Signal Processing, vol. 34, pp. 898-911,
August 1986.
J. Yoo. “Stack Filters: Design, Algorithms, and Ap-
plications.” Ph.D. Dissertation, Purdue University,
August 1993.

