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ABSTRACT 

Morphological image processing is a technique 
that is becoming increasingly important for a wide 
range of image processing tasks. The two primitive 
operations, dilation and erosion, expand or contract 
objects of an image in a manner described by the 
structuring element, commonly a binary image. The 
shape of the structuring element allows fine control 
over the shapes processed by the operation. The time 
taken for morphological operations to complete is 
proportional to the number of pixels in the structuring 
element. By breaking the structuring element down 
into pieces that are applied sequentially to an image the 
computation time for the morphological operations can 
be reduced. This paper examines our implementation 
of the Zhuang and Haralick tree search decomposition 
algorithm and presents results of timing experiments 
that show the time taken for decomposition rises 
exponentially with the number of pixels in the 
structuring element. 

1. INTRODUCTION 

The morphological operations as described by 
Serra [l] are based on hit and miss operations on binary 
images. The result of a morphological dilation is the 
set of locations where the structuring element set could 
be placed such that it would intersect with objects in the 
image set. The result of a morphological erosion is the 
set of locations where the structuring element could be 
placed such that it would not intersect with any pixels 
not in the input image set. In algorithmic terms a 
dilation is carried out by scanning an image and, for 
every pixel in that image, examining the neighbourhood 
of that pixel as defined by the structuring element, to 
see if it contains a pixel belonging to an object in the 
image. This has the result of making objects in the 
image swell, since pixels near objects may have the 
edge of objects in their neighbourhood and thus be 
included in the output set. Erosion makes objects 

shrink - since pixels within an object that are close 
enough to the edges of the object to have a background 
pixel in their neighbourhood, as defined by the 
structuring element for the operation, will not be 
included in the output set. The size of the 
neighbourhood to be examined equals the size of the 
structuring element used in the operation, therefore the 
time to perform an operation is directly proportional to 
the size of the structuring element set. 

There are a number of approaches to speeding up the 
binary morphological techniques. One route is to 
improve the operation of the low level algorithm. This 
can be done by changing the data structures to improve 
the operation of the algorithm, or by making the 
algorithm examine and manipulate the data in a more 
efficient manner. 

The second approach for speeding up binary 
morphological operations is to perform structuring 
element decomposition (SED). It is possible to 
decompose a structuring element into a series of shapes 
that can be morphologically added together to 
reproduce the original shape. The structuring elements 
that make up the decomposition may be applied to an 
image successively and can reduce the time taken for 
the overall operation. It is also possible to decompose a 
shape such that its component parts can each be applied 
separately to the image and then combined set 
theoretically to produce the same result as the original 
structuring element. This allows a complex structuring 
element to be broken down into a set of simpler shapes 
that may have optimised implementations. 

Various SED methods exist in the literature, see for 
example [2-81. Which decomposition algorithm is the 
most suitable depends on the hardware platform being 
used for its implementation. Specialised hardware 
platforms such as Cytocomputer and Massively Parallel 
Machines, have been designed for fast implementation 
of morphological operations. The limitations on the 
size, shape and connectivity of structuring elements that 



these machines can efficiently handle have greatly 
influenced the development of different decomposition 
algorithms. Zhuang and Haralick [8] have presented an 
elegant SED algorithm using tree searching. Despite its 
mathematical elegance there is no detailed 
implementation and assessment of this algorithm in the 
literature. The Tree Search Decomposition Algorithm 
(TSDA) is an implementation and extension of this 
algorithm. 

2. TREE SEARCH DECOMPOSITION ALGORITHM 

The search based method as described by Zhuang and 
Haralick [8] decomposes a structuring element down 
into a series of translate and add operations. Each of 
these operations is equivalent to a sparse structuring 
element containing two elements, one at the origin, the 
other at a position relative to the origin equal to the 
vector of the translation. The two member structuring 
elements can be applied in any order since 
morphological dilation is commutative. 

The question the algorithm attempts to answer is this: 
Given a structuring element S, determine the smallest N 
and corresponding components H,, H,,...,H, such that 

S=H,@Hz@...$HN (1) 

If the structuring elements contain only two members, 
then they are referred to as 2-point sets. If all of the I& 
are 2-point sets then the resulting decomposition is said 
to be a 2-point decomposition. A canonical 2-point 
decomposition is one where all of the H,‘s contain the 
origin. These 2-point sets can be performed with only a 
shift and AND operation for an erosion, or a shift and 
OR operation for dilation. This leads to very efficient 
hardware implementations, which is what the 
decomposition was designed for. 

The decomposition of S is found by a combinatorial 
search process that constructs a tree of possible shift 
and add operations from a start node. The search is 
recursive. At each m-level node there is a partial 
decomposition H, @ I$ @ . . . $ K. The algorithm 

creates child nodes which have one more translation, H, 
@ H, $ . . . @ H, @ H,,, such that the decomposition 

result still remains within the confines of the structuring 
element to be decomposed. Any node for which there 
is no translation t such that ( H, @ I-& @ . . . @ I-I,,, ), E S 

can have no children and therefore dies. If, at any 
level, all of the nodes die, then the search has failed and 
S has no decomposition. If at a node, S 0 (H, @ H, @ 

. . . @ H,,,) = a single pixel, then this m-level node is a 

leaf node. The path from this m-level node to the root 
node is one possible decomposition of S. The optimal 
decomposition of S is the shortest path from the root 
node to a living leaf node. The optimal solution is 
easily found by a breadth-first search; it will be the first 
living leaf node located. 

The root node will contain no partial decomposition, 
but will have a large number of children. The children 
of the root node are the vectors which can be between 
each possible pairing of the members of S. This large 
number is reduced by the fact that repeated vectors are 
ignored, however the search method is very nearly an 
exhaustive search. Methods to speed up the algorithm 
involve: i) reducing the degrees of freedom allowed in 
generating the children for each node and ii) forward 
checking the children to eliminate. 

To describe the operation of the tree search it is useful 
to detail the operation of the algorithm at an arbitrary 
location part of the way down the tree. When a node at 
level m is born it is given a name J,, which is the mth 
structuring element, or translation, in the decomposition 
of S. Apart from a name it is also given a heritage from 
its parent consisting of the following: 

i) a restricted sequence L, which contains all of 
node Jn’s future generation descendent name 
possibilities; 

ii) the partial decomposition K, = J, @ . . . @ J,; 

iii) the undecomposed part of S, T, = S 8 K,. 

The production of children is accomplished by scanning 
through the list L, and, using the forward checking, 
eliminating all those members that cannot be part of a 
decomposition. The result of this elimination is a list 
L*,, containing a list of J’s that are valid members of a 
possible decomposition. For each member of the list 
L*, a child node is generated, and is given the heritage 
as defined above. L, is constructed from the list of 
successful possible children from the parent node, L*,,,. 

The elements of L*,., are 1 J,, .,,, , J,,,,.,,I, . . . . J,m .,,” 1, 
iherefore the parent node, J,.,, has n children. The 
heritage given to each of the child nodes consists of one 
of the names taken from the list L*,., and L,, which 
consists of all of the elements of L*,., that are greater 
than or equal to L,. For example the kth child of J,,,, 
will have a list of possible children, L,,,, which consists 
of 1 J,m.w J,a.,,t+,’ ..., Jw,n). 

The method of forward checking is to see if S is closed 
with respect to the current decomposition when the 



prospective child (J, selected from L,) has been added 
to it, i.e.: 

S=So(K,,,@J) (2) 

where o is the opening operation. In terms of the 
heritage (2) can be written as 

S = (Trn 0 J> cl3 (J CI3 Km). (3) 

It is more efficient to test (3) in several parts. It follows 
directly [8] that if S = (T, 8 J) @ (J @ K,) holds then: 

#S I #(T, 0 J) . #(J @ K,) (4) 

where #(S) denotes the number of members in set S. In 
the first step of the forward checking, T,,, 8 J and J $ 

K,,, are computed and the inequality checked. If the 
inequality is not satisfied then this J will not be put into 
the list L*, and the next member of L, is tested. If the 
inequality is valid then the following relation is 
checked: 

Tm = Pm 8 J> (33 J (3 

If relation (5) is true then J has passed the checking and 
is put into L*, because: 

If (5) is not true then the element J has a second chance. 
The dilation (T,,, 8 J) @ (J $ K,) is performed and 

compared for equality with S. If this is successful then 
J is put into L*,,,, otherwise J is discarded. Once the list 
L*, has been generated, the work on this node is 
complete and the new children should be spawned. 

The partial decomposition for the child, K,,,, is 
generated by dilating the partial decomposition of the 
current node, Km, by the J represented by the child being 
generated. Similarly T,,,, the undecomposed part of S 
for the current node, is generated by eroding the current 
value T, by the J which is represented by the child 
currently being generated. It need not be the case that 
these values are generated after the forward checking 
stage. They may be generated during the testing and 
stored until needed. 

A node at the end of a decomposition, an end-node, 
occurring on level N is identified when #T, = 1. At this 
point the single member of T, is the q from the 
decomposition: 

s = (4) $ J, $ . . . $ JN. (7) 

An end-node will produce no children. Nodes that 
produce no children, but that have not reduced the 
undecomposed part of S down to one element, are dead 
branches. 

To find an optimal decomposition, a breadth-first tree 
search is carried out that scans through the levels of the 
tree from the root to the leaves. The first end-node 
found is the optimal decomposition because it will be 
the one with the shortest path back to the root node. 
Any other end-nodes found on the same level will also 
be optimal. A second form of the algorithm was 
implemented where the tree was built up in a breadth- 
first manner. The construction of the tree was halted on 
identifying the first end-node. Since the tree is 
constructed in a breadth-first manner the first end-node 
found is the most optimal decomposition. The second 
implementation allowed the algorithm to finish without 
having to construct the entire tree. 

3. RESULTS 

Testing for correctness was carried out by using 
the same input bitmap as in the Zhuang and Haralick 
paper example [S], printing out the contents of the 
entire tree and checking that it corresponded to the tree 
given in the paper. A second test was to examine all 
the possible outputs from a run, and manually check 
that they produced valid decompositions. Once these 
tests were performed the tree printing functions of the 
software were disabled and memory use optimisations 
added to the code. 

The decomposition algorithms were tested using a 
series of square structuring elements with sizes ranging 
from 2 x 2 pixels to 15 x 15 pixels. The timing results 
are shown in Figure 1. The shape of the graph shows 
that as the size of the structuring element gets larger, 
the time taken for the algorithm to find the optima1 
solution increases at an exponential rate. The reason 
for the rapid increase in time to decompose structuring 
elements can be seen when the number of nodes in the 
generated tree search is examined, see Figure 2. 

The maximum size of a structuring element that can be 
decomposed by the algorithm is 13 x 13 pixels. If the 
tree is built in a breadth first manner and construction 
halted when the first solution is found, then a slightly 
larger image, 14 x 14 pixels, can be handled. At sizes 
larger than these the program will run out of memory on 
the current system. It should be noted that the 
important factor in the size of the search tree is the 
number of possible translations between different pixels 



on the bitmap. This increases as the number of pixels 
grows. Therefore, the dimensions of the bitmap are of 
secondary importance to the number of pixels in the 
image. 

Figure 1. Time to Decompose a Square 
structuring element 
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Figure 2. Nodes in tree against Height and Width 
of Structuring Element 

The graphs in Figures 1 and 2 were entered into a curve 
fitting program. All of them closely fitted a logarithmic 
graph of the form: 

,=*+,(Wp) 

where y is either time or the number of nodes in the 
tree, x is the height or width of the structuring elements 
and A, B and C are fitting parameters. The curve fitting 
program estimated that, on a DECstation 5000/200 
running Ultrix, with a speed spec mark of 20, a 20 x 20 
pixel structuring element would produce a tree with a 
maximum of 1,959,636 nodes and would require 
approximately 82 hours to complete. 

The initial tests of the decomposition algorithm were 
performed on simple shapes that were known to be 
decomposable. These were squares and other lozenge 
shapes. On examining the output of the algorithm it 
was possible to see that the output translations of the 
structuring element were closely connected to the edges 
of the input structuring element. The translations in the 
decomposition were either horizontal, vertical or in one 
of the two diagonal directions. If all the translations 
with the same direction were applied to a single pixel 
they produced a straight line that was the same length 
as the edge in that direction on the structuring element. 
For example, an octagonal structuring element 
contained within a I5 x I5 pixel square will produce the 
following decomposition: 

This can be broken down into: 

II3,3), (l,l), (1,111, (I-3,3), I-1,1), {-l,lll, {IO*217 
IO,119 (O,l)l, II2,0), Il,Ol, {LO}}. 

The first batch of three translations will produce the 6 
pixel long down diagonal, the next batch of three 
translations will produce the 6 pixel long up diagonal, 
and next two batches of 6 will produce the vertical and 
then horizontal 5 pixel edges. The above 
decomposition took 493 seconds to generate. 

The lengths of the translations in each direction 
comprise the most efficient method of creating a line of 
correct length. There is a pattern to the magnitudes that 
can be seen if a large enough length of pixels can be 
decomposed. If a straight line of 20 pixels is 
decomposed, the output is as follows 

{ (lO,O}, {5,0}, {2,0}, (l,O), { l,O)}. 

The order of the magnitudes can be calculated by 
dividing the length by 2 and rounding down. This value 
is the length of the first translation. Subtracting the first 
translation length from the initial length gives the 
length to be divided by 2 in the next iteration of the 
algorithm. This division and subtraction continues until 
the current length can no longer be divided by 2. Using 
this algorithm, and a routine to create the partial 
Freeman chain of a shape, a program was written to 
create a series of shift and add translations that would 
be the same as a tree search decomposition of the input 
structuring element. This program was only able to 
decompose lozenge shape structuring elements, but 
operated much faster. Since its complexity was 
proportional to log to the base 2 of the length of the 



edges it was possible to create the decomposition of a 
255 x 255 square structuring element. This would have 
been impossible using the TSDA. These pseudo- 
decompositions were used to perform the timing 
analysis of the morphological primitives using the 
results of the decompositions. 

Attempts were made to decompose more complicated 
shapes but they were usually unsuccessful. A variety of 
shapes were tested. Triangles, trapeziums, kites, and 
most patterns of distinct repetitions failed. Some circle 
shapes were successful, although testing of this was 
limited to shapes that were small enough to be 
processed. All the lozenge shapes that would work with 
our Fast Morphology Transform (FMT) algorithm [9] 
were successful. The lozenge shapes that would not 
work with the FMT algorithm, i.e. shapes constructed 
from diagonals with no horizontal or vertical 
components, failed with the tree search decomposition 
method. 

In general, the tree search method will be able to 
decompose any convex shape that has one degree of 
rotational symmetry, i.e. any shape that can be rotated 
180” and exactly map onto itself. If the structuring 
element comprises a number of separate objects then a 
decomposition is only possible if the element can be 
constructed from a shape following the above criterion 
that is cumulatively shifted and added to build up the 
pattern. 

4. CONCLUSIONS 

The Tree Search Decomposition Algorithm is 
mathematically very elegant, but it remains an 
exhaustive search technique. TSDA can only 
decompose shapes that can be generated by a series of 
shift and add operations, such as convex, symmetric 
shapes. These shapes can have edge directions that do 
not follow the four 8-connected directions i.e. 
horizontal, vertical, diagonally up and diagonally down. 
The algorithm can also decompose structuring elements 
consisting of groups of convex, symmetric shapes. All 
the shapes would have to be identical, and in general 
there would have to be 2” of them where x is a positive 
integer. The shapes could partially or fully overlap, 
possibly making odd numbers of shapes, or concave 
shapes. Although we have shown that TSDA is very 
slow it could be made more efficient if the method 
decomposed structuring elements into larger shapes 
than the two-member shift and add operations currently 
used in our implementation. Possibly using an 
exhaustive tree search method that looked for simple 
shapes could be useful. Moreover it could be effective 
to use a tree search method to generate a tree truncated 

to a manageable size. The best decomposition from the 
truncated tree could then be used to reduce the size of 
the structuring element for a second pass with the 
algorithm. This could be an effective method to work 
around the memory problems associated with TSDA. 
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