
A HISTOGRAM METHOD FOR FAST GREYSCALE

MORPHOLOGY OPERATIONS

D.M.P. Hagyard, M. Razaz and P. Atkin *

School of Information Systems,University of East Anglia, Norwich, England
* Synoptics Imaging Systems Ltd., Cambridge, England

Email: mr@sys.uea.ac.uk

ABSTRACT

A novel histogram method is presented for fast
computation of greyscale morphology operations. This
method is compared against the list method, a brute
force approach. The histogram method is shown to be
considerably faster than the brute force method, and
that its computation time is independent of the size of
the structuring element. For comparison purposes we
have also implemented an alternative fast algorithm
based on the van Herk approach for performing
maximum and minimum filters on a 1D array of data.
The histogram and van Herk methods are compared and
contrasted. Both methods are fast but the histogram
method is more flexible in dealing with different types
of structuring element shapes.

1. BRUTE FORCE METHOD

The brute force implementation of the greyscale
morphological primitives converts a structuring element
into a list, where each member of the list contains an
offset from the origin and a colour value. For each
pixel on the image the list is scanned. When
performing a dilation, for each member of the list the
offset is added to the current pixel location and the list
colour value is added to the colour at that location.
Once the list has been scanned, the maximum value
found after the addition is written into the current
location. When performing an erosion, the same
process is followed except that the list colour value is
subtracted from the image value, and the minimum
value found during the list scanning is written into the
output pixel. To perform Minkowski addition and
subtraction the same methods as dilation and erosion
should be followed, except that the offset values should
be subtracted from the current pixel location instead of
being added.

The brute force method is capable of implementing any
structuring element shape. This flexibility comes with a

price however. The algorithm is very slow, as its
computational complexity is O(n.m), where n is the
number of pixels in the image and m the number of
pixels in the structuring element. For the binary version
of the brute force implementation of dilation it was
possible to stop the scanning through the list on locating
the first black pixel, since at that point the output pixel
had to be black. Similarly for erosion it was possible to
cease scanning the list once the first white pixel was
found. The fact that the entire list did not always have
to be examined allowed the binary algorithms a slight
speed up on real images that are not completely black.
However, for the greyscale brute force algorithm it is
less likely that scanning through the list could be ended
early. Halting the scanning can only occur when a
pixel value comes to a maximum (for dilation), or to a
minimum (for erosion).

2. HISTOGRAM METHOD

There are a number of methods in the literature
for calculationg greyscale primitive operations [1,231.
We present a new histogram method developed for fast
computing of greyscale morphological primitives. The
method is designed for operating on 1D arrays, and is
extendible to 2D images by performing a primitive
operation in a number of directions. The method
operates by passing a window, the same width as the
structuring element, over the input buffer. A histogram
data structure maintains a count of the number of pixels
of each colour under the window. As the window is
scanned along the input, the histogram is updated with
the incoming and outgoing pixel values. The histogram
value at the colour of the outgoing pixel is incremented
at the colour of the incoming pixel and decremented at
the colour of the outgoing pixel. This allows the
algorithm to maintain a count of the number of pixels
under the window with only two operations per pixel
moved. For dilation the maximum value under the
window is maintained. This is easy to maintain as long
as the maximum value is never the outgoing pixel, since
it is only necessary to check that the incoming value is

not larger than the current maximum and changing the
maximum if it is. If the outgoing pixel value is
maximum then the algorithm will have to find the next
largest value. The ease with which this can be done
depends on the type of data structure used to store the
histogram. Performing an erosion requires a similar
approach except that the algorithm must maintain the
minimum value under the window instead of a
maximum.

The histogram method is a 1D maximum or minimum
filter, and therefore will perform only flat greyscale
morphology. If the values under the window are
incremented each time the window is moved then the
algorithm will perform a greyscale morphological
operation with a sloping or ramp shaped structuring
element. By performing the operation in two
directions, a 1D cone shaped structuring element can be
implemented.

The histogram method was implemented using an array
of 256 integers, with the q” array element holding the
number of pixels of colour q under the window. The
buffer is initialised with zeros. As the window is
moved across the line of pixels, the incoming pixel
value is added to the window by incrementing the
pixels value in the array. The outgoing pixel is
subtracted from the window by decrementing the pixel
value. For dilation, the procedure keeps a pointer at the
array position that contains the current highest pixel
value under the window. If the outgoing pixel value is
maximum then a new maximum value under the
window has to be found. This is done by searching
down through the array starting from the outgoing
maximum looking for a non zero value. For erosion, if
the outgoing pixel is minimum and its removal will zero
the’array value a new minimum has to be found. This is
done by searching upwards through the array starting
from the outgoing minimum looking for a non zero
value. The number of times that this process must be
followed for either erosion or dilation depends on the
shape of the input image. At the worst case the image
could contain isolated peaks of 255 pixels separated by
areas of zero pixels each slightly wider than the window
length. This would cause the algorithm to search
through the entire array every time the maximum 255
pixel left the window. In the most likely case ‘loosing’
the maximum will happen fairly frequently However
the length of array searched through will not be very
long because most real greyscale images do not have
particularly sharp gradients.

To perform erosion or dilation by a sloping structuring
element it is necessary to increase or decrease all the
pixel values under the window each time the window is

moved. Changing the window values could be
performed by scanning through the entire histogram
array and shifting the values up or down each time the
window moves. The number of operations required for
each output pixel is equal to the size of the histogram
array. The size of the histogram would have to be equal
to the number of grey levels in the image plus the width
of the window. The extra size is needed to account for
cases during a dilation when a pixel value of 255 enters
the window and is shifted past the maximum value in
the image. Although the large value cannot be
displayed it is still the maximum, its value, clipped to
255, stored and written to the output. Similarly for
erosion, zero values entering the window will become
negative and will need an array equal to the length of
the window plus 256 to store the histogram. When
removing pixels from the histogram as they leave the
window, it is necessary to decrement the histogram
location at the pixel value modified by the width of the
window to take account of the fact that the pixel value
has been shifted.

To avoid scanning the entire histogram for each output
pixel, a slightly more complex data structure was
implemented. The histogram array is defined to be
circular and with a pointer to the current location of the
zero value set. Incoming and outgoing pixels are
maintained, shifting the outgoing pixel value by the
window width as before. The procedures for carrying
this out are slightly more complex due to the
maintenance of the circular array. After the incoming
and outgoing pixels have been processed the zero
location pointer is moved one place down for dilation,
and one place up for erosion. This performs in one
operation shifting the contents of the entire histogram
array up or down.

3. VAN HERK METHOD

The van Herk algorithm performs maximum and
minimum filters on a ID array of data in linear time
with respect to the number of pixels in the array [3].
The input to the algorithm is a ID buffer of pixels, I,
which contains n pixels. One end of the array is padded
with zeros to make its length, n’, up to a multiple of the
structuring element width m. This string of values is
used to fill two arrays, G and H which are both n’ long.
For dilation, the two arrays are divided into n’/m slices
of m pixels each. In each slice of array G the first pixel
(counting from the left) is compared with the second
pixel and the largest value placed in the second pixel
location. In the next step, the new second pixel value is
compared with the third pixel value and the maximum
written back to the third location. This process
continues until the my pixel in each slice has been

written to and tends to ‘smear’ the maximum value to
the right. The H array is processed in the same manner
except the operation is performed starting at the right
hand edge progressing to the left. To produce the final
output, the G array is shifted m - 1 pixels to the left.
The values in each array are compared and the
maximum is put into the output array 0, i.e. O[p] =
max(G[p], H[p - (m - I)]). Any values that are not in G
or H are assumed to be 0.

For erosion the two arrays, G and H, are divided into
n’/m slices of m pixels each. In each slice of array G
the first pixel (counting from the left) is compared with
the second pixel and the smallest value placed in the
second pixel location. In the next step, the new second
pixel value is compared with the third pixel value and
the minimum is written back to the third location. The
process continues until the m* pixel in each slice has
been written to and hence it tends to ‘smear’ the
minimum value to the right. The H array is processed
in the same manner except the operation is performed
from right to left. To produce the final output the G
array is shifted m - 1 pixels to the left. The values in
each array are compared and the minimum put into the
output array 0, i.e. O[p] = max(G[p], H[p - (m - l)]).
The comparison is run starting from G[m - 13 running
for n - (m - 1) locations.

Once the buffers are tilled the algorithm requires only 3
operations per image pixel, thus making the algorithm
very efficient. The computational complexity of the
algorithm is O(n’) and is independent of the size of the
structuring element. The algorithm efficiency is
reduced by the necessity of filling the buffers, and the
buffers may need padding. Memory requirements are
low since the algorithm is applied to one row at a time.

width of the structuring element minus 1. The results of
the brute force method are presented separately in
Figure 1 because the computation time for both
operations grows, as expected, exponentially with the
structuring element size.

Figure 2 displays the timing results for the fast erosion
methods. Comparing Figures 1 and 2 shows that the
histogram and van Herk methods are much faster than
the brute force algorithm. All the methods are linear
with respect to the number of pixels in the structuring
element. The van Herk algorithm appears to be slightly
faster than the histogram method. The extra overhead
involved in maintaining the circular histogram data
structure makes the sloping histogram method slower
than the flat histogram method upon which it is based.
The peaked histogram method because it is
implemented by performing two sloping erosions in
opposite directions takes approximately twice as long as
the sloped structuring element. For the peaked
histogram method there is a noticeable downward trend
as the structuring element size increases. There is a
slight downward tendency in the other graphs, but they
are not as noticeable as the trend for the peaked
histogram.

Figure 3 compares the histogram and van Herk methods
for computing the dilation operation. Similar
observations to those made for the graph in Figure 2 can
be made here. All the methods show a slight upward
trend as the structuring element gets larger, this is
attributable to the output image size getting larger. For
both the erosion and dilation operations the time taken
is proportional to the number of pixels in the output
array, and independent of the structuring element size.

4. RESULTS

Both the flat and the sloping histogram methods
and van Herk algorithm were implemented for 1D
images and tested against the greyscale brute force
method. The sloping histogram method was extended
to performing the peaked structuring elements by
running the algorithm in both forwards and backwards
directions. Experiments were carried out to check that
the methods produced the correct results and to examine
how quickly the algorithms could perform dilation and
erosion.

The timing tests were performed on an 864 x 864
greyscale image. The results presented are for the 1D
scanning of each of the 864 rows in the image. To
preserve the edge information, the output image size is
increased for dilation and reduced for erosion by the

Figure I. Graph of Time to dilate and erode an 864

black square image, using the Brute Force Morphology
method with various sizes of ID structuring element.

- Hiitogram

- - - Sloping Histogram

___c- --__ ----- ____ e-------m-_ --mm_
8’.

/
4 .--‘.....-----.-_._..........___._.__.

2

t

Figure 2. Graph of Time to erode a 864 black square

image, using various Morphology methods with

various sizes of 1D structuring element.

- Histcgram

- - - Sloping Histogram

S

S

1

_____ -__w--------

___c______- ------.

-

4 .*-.-.-...
._____.._...._._.........._____..._._._.... .

Figure 3. Graph of Time to dilate a 864 black square

image, using various Morphology methods with

various sizes of 1D structuring element.

5. ACCURACY

The testing of the algorithms was carried out by
comparing the results of the new methods with the brute
force. These showed that the new methods for using
flat structuring elements operated correctly. The
methods for using non binary, or non flat structuring
elements showed a number of odd effects as described
below.

When performing an erosion operation it is easy to see
that the pixels around the image can be ignored, since
the output should only contain pixels where the entire

structuring element has been fitted into the image.
When performing a dilation the output will contain
pixels that are the result of the structuring element
covering both on and off-image pixels. If the
structuring element is flat there is no problem since the
off-image area will never have a maximum value under
the structuring element unless the off-image area is
greater than zero. If the structuring element is non flat
and the off-image area is defined to be zero, then the
off-image value plus the value of the structuring
element at that point may have a maximum value (that
gets used for the output pixel). If the off-image area is
defined to be minus infinity then no pixel in the
structuring element can make an off-image pixel more
than the value of an on-image value, assuming that the
structuring element contains only positive values. A
cone shaped structuring element dilating a blank image
(with all pixels at zero and the off-image area also
defined as zero) will produce a completely flat image at
a level equal to the maximum value of the structuring
element. If, however, the off-image area is defined as
minus infinity the resultant image will have a bevelled
appearance. The area in the middle of the output the
size of the input image will show the maximum value
of the structuring element. Around this area the image
values will slope down in a manner defined by the
shape of the structuring element. This can be observed
in Figures 4 to 6.

If all the pixels in the neighbourhood of the image edge,
as defined by the structuring element, are larger than
the maximum value in the structuring element, then the
definition of the off-image area can have no effect.

With erosion and dilation, all the pixels of the input
image will be altered by the height of the maximum
value in the structuring element. In the case of the flat
structuring elements, all the members of the structuring
element will be zero. For a non-flat structuring element
the entire image is incremented (for dilation) or
decremented (for erosion) by the maximum value of
tthe structuring element. For most applications the
change in image value may be acceptable, and the
problem can be rectified by a simple addition or
subtraction.

It should be remembered that the representation of the
image in the computer may have a limited number of
grey levels available to it, leading to the loss of peaks in
an image under dilation, or to the loss of troughs in an
image under erosion. This could be less expected under
opening or closing, since these operations do not overall
shift the height of the image pixels, except in the
intermediate steps. Therefore the use of large ball or
cone shaped structuring elements could cause problems

for erosion and dilation due to a limited number of grey
levels.

The peaked structuring element is the result of applying
a sloped structuring element in two opposite directions.
This is equivalent to using a 1D cone shaped structuring
element. The result is not quite as expected in that the
combination of the two structuring elements is a peak,
but one offset by the height of one of the structuring
elements. The structuring element shape will leave the
entire image too high if the operation is dilation, and
too low if the operation is erosion. The problem can be
solved by vertically offsetting the entire image to make
the result correct. This may produce incorrect results if
the number of grey levels in the image is such that
peaks in the image will be truncated on dilation, and
troughs in will be flattened on erosion.

Figure 4. Original image presented as a 3D umbra.

Figure 5. Structuring element presented as a 3D umbra.

6. CONCLUSIONS

We presented a novel and fast histogram method for
computing greyscale erosion and dilation operations. It
was shown that the computation time is independent of
the structuring element size, and varies linearly with the
number of pixels in the input image. The method was
implemented for flat as well as sloping and peaked
structuring elements. The sloping version of the
histogram method is slower than the flat version and the
peaked version takes twice as long. Using the peaked
version allows non-flat structuring elements, but means
that attention must be paid to the definitions of off-
image pixels on dilation, and to the possible truncation
of pixel values due to limitations in the image data
structure used.

REFERENCES

[l] Shih, F.Y.C., Mitchell, O.R., “Decomposition of
Grey Scale Morphological Structuring Elements”,
Pattern Recognition, Vol. 24, No. 3, pp 195-203, 1991.

[2] Soille, P., Breen, E.J., Jones, R.J., “Recursive
Implementation of Erosions and Dilations Along
Discrete Lines at Arbitrary Angles”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 18,
No. 5, pp 562-567, 1996.

[31 van Herk, M., “A fast algorithm for local
minimum and maximum filters on rectangular and
octagonal kernels”, Pattern Recognition Letters, Vol.
13, pp 517-521, 1992.

Figure 6. The result of performing a dilation of the
image umbra in Figure 4 with the structuring element in
Figure 5 presented as an Umbra. Observe the bevelling
around the edge of the image.

