
IMPLEMENTATION OF PARALLEL ADAPTIVE STACK FILTER USING PVM 

Youngrock Yoon, Hyeran Byun, Yilbyung Lee Jisang Yoo 

Computer Science Department Electronics Department 
Yonsei University Hallym University 

Seoul, Korea Chuncheon, Korea 
lennon@csai.yonsei.ac.kr jsyoo@sun.hallym.ac.kr 

ABSTRACT 

Stack filter showed good performance for signal restora- 
tion and noise reduction especially for impulsive noises, 

but required too much resource. Parallel adaptive stack 
filtering algorithm was developed to overcome this prob- 
lem and implemented on parallel architecture. We im- 
plemented this algorithm using new heterogeneous par- 
allel computing environment known as parallel virtual 

machine(PVM), using a well-known master-slave scheme. 
Load balancing, which is another important factor of 
heterogeneous computing, was used to balancing work- 
loads of each host which is used as a separated parallel 

processor. It showed a better performance than pre- 
vious implementation, when it was applied to a big 
image with large window size using reasonable number 

of hosts as the parallel processor. 

computing environment. We will introduce basics of 

adaptive stack filter, and PVM first, and show sug- 
gested structure of new application program, and con- 
clude with experimental results. 

2. PARALLEL ADAPTIVE STACK FILTER 

A stack filter is a sliding window nonlinear filter whose 

output at each window position is the result of a super- 
position of the outputs of a stack of positive Boolean 
functions operating on thresholded versions of the sam- 
ples appearing in the filter’s window. 

1. INTRODUCTION 

Stack filters satisfy the two properties, which are 

the weak superposition property known as the thresh- 
old decomposition [3, 41, and the ordering property 

called the stacking property [3, 4, 51. 

We can say a gray scale image X with pixel values 

ranging between 0 and M may be represented as the 
sum of series of binary-valued images, 

Among the many non-linear filters, stack filter has su- 
peiiority due to its known optimal training algorithm 
using mean square error criterion. However, because 
of its serial nature, implementing stack filter required 
huge amount of time and computational resource. Fast 

parallel adaptive stack filter was developed to reduce 
computational time [l], and was implemented on the 
machine which has parallel architecture. 

X(s) = 5 Q(S), Q(S) = 1 1, X(s) L 1 
I=1 0, X(s) < 1 

An emerging tool of parallel scheme, known as par- 
allel virtual machine(PVM) has enabled many serial- 
natured network-available architecture to work as a 
parallel machine [2]. Architectures, which are com- 
posed of many workstations and PCs working with le 

cal area network, are common in most computing en- 
vironment around the world recently. 

Now let W be the size P window of the filter and let 
W(s) be the array of P points of the image that appears 
in the window W when its reference point is at position 
s. Then, the window array Wx(s) of the image X can 
be similarly thresholded, so that 

I=1 

We developed a new implementation of parallel adap- 
tive stack filter using PVM, which used master-slave 
scheme of PVM, and simulated it wit,h images cor- 
rupted with impulsive noise. This program also used 
load balancing scheme, because of its heterogeneous 

Each stack filter Sj(.) is defined by a boolean func- 
tion f(.) which satisfies a stacking property: if the out- 

put of f applied to wx,~(s) is 1, then the output pro- 
duced when f is applied to threshold level Ic must also 
be a 1 if 6 5 I. More formally, for all L 5 1 



A boolean function has this property if and only if it is 
positive, Due to these two properties, the operation of 
a stack filters is the same as the operation of the corre- 

sponding Boolean function for the thresholded binary 
inputs. 

Optimal stack filter can be obtained by minimizing 
the mean absolute error bet,ween the output of the filter 

and some desired image [6]. If X is the desired image, 
and 2 is the corrupted version observed by the filter, 
then the error to be minimized by proper choice off is 

MAE, = 

I 

By minimizing the bound in equation (l), we can find 

E{IX(s) - ww,(4>l~ 

the Boolean function f(.) which makes the best deci- 
sion at each location s as to whether the desired image 
value at s is less than 1 or not. 

The optimal filtering problem can t.hen be formu- 
lated as a zero-one integer linear program. However 
the number of constraints on f implied by the stacking 
property grows exponentially in the window size of the 

filter and knowledge of the joining statistics of the im- 
age X and the process which corrupted it, are required 
for computing the coefficient of the cost function. 

Adaptive stack filtering algorithm [7] were devel- 
oped to minimize these problem, and new adaptive 
stack filtering algorithm was developed [l] to enhance 
the algorithm’s parallel nature. Unlike the original al- 

gorithm, the stacking property will be enforced after 
L observation have been taken. If we suppose L as 

all possible observation from the training image and 
di as the i”’ decision variable of boolean function f(.) 

for a boolean function f(.) can be completely specified 
by the decision vector D = (dl, da, . , dp) where P 

is the size of window, then for each i, the number of 
increment or decrement on di is the cost incurred if 
the filter outputs a 0 or 1 for each observation respec- 
tively. Thus if di is thresholded at 0 to produce the 
boolean table, the result is the optimal hard decision. 
Though this is an optimal boolean function for filtering 

the corrupted image used in training process, it’s not 
a positive boolean function until checking and enforc- 
ing the stacking property are applied. Two stacking 
property checking and enforcing schemes which can be 
parallelly implemented were also developed. 

3. PARALLEL PROGRAMMING USING 

PVM 

3.1. Heterogeneous Computing 

We can define a heterogeneous computing environment 
as a group of computers which is composed of different 
architectures, fast net,work connecting all computers in 
the group, and programming environment familiar to 
users. 

The heterogeneous computing environment can im- 
prove performance of the whole environment with rela- 
tively small costs, not being limited to a specific appli- 
cation. Unlike homogeneous environment, which will 
distribute given parallel functions evenly to its proces- 

sors, in heterogeneous environment, programmers must 
analyze the features of parallel functions and consider 
the most appropriate mapping to a specific processor, 
because the loads to each host as well as their process- 
ing time will be varying. To accomplish this goal, re- 

arranging an application parallelly, and examining the 
function code type of each rearranged function must be 
done, as well as mapping the code type to the bench- 
marking of each computer, and distributing the loads 
according to the result of mapping. 

3.2. Parallel Virtual Machine(PVM) 

PVlll is a parallel programming environment which en- 
ables a programmer to treat heterogeneous program- 
ming environment as a parallel computer [2]. It uses 
the message passing methodology, which was most, ap- 
propriate to heterogeneous environment and commonly 
used as a method of data communication of distributed 

computation. 

PVM is composed of the user interface, which man- 
ages each local host, and libraries, which offer vari- 
ous message-passing functions enabling programmers 
to make parallel applications. 

There can be many programming schemes using 
PVM, but the master-slave scheme is widely used. This 

scheme divides applications to two parts, main function 
part and parallel function part. The slave functions 

must be placed to each slave host compiled to be ex- 
ecuted in each different architecture. This can be a 
constrained matter to programmers, but only the data 
which are required to perform the application need to 
be exchanged by message form, so the network loads 
are minimized. 

4. FILTER STRUCTURE 

The whole program is composed of two parts, train- 
ing and filtering function, each of which use master- 



slave scheme. The host used as the master provides 
user interface. It first reads the original and impul- 

sive noise-corrupted version of images for training and 
filtering. Before getting into functions, the master per- 
forms benchmarking the current environment to dis- 
tribute proper number of jobs to each host. 

4.1. Master-slave structure 

Master spawns slaves according to the PVM configu- 

ration information, which contains name of hosts cur- 
rently enrolled in PVM environment, relative speed of 

each host, host architectures and task identification 
numbers, which is used internally to identify each host. 
Once master successfully spawned slave tasks to each 

host, master has the task id’s which will be used to ex- 
change messages between master and each task. Task 
id’s have to be given to each slave, so that each slave 
can communicate with master or each other. Each 
task can send or receive messages with specific mes- 
sage type, so that each task can confirm that they got 
a message from right sender. 

Functions for all of these works are provided in li- 

brary, as well as the functions for each data type, which 
provide data packing procedure to prepare messages. 

4.2. Load Balancing 

In master-slave programming scheme, the whole pro- 

cess time is dependent on the time of the slowest slave, 
so we can reduce the whole process time by distributing 
proper number of tasks to each slave. In our program 
the number of tasks to be distributed is the intensity 
level of input image. 

,There are three important factor of benchmarking 

in heterogeneous computing environment:CPU speed, 
workload, and number of tasks to be given to each host. 

CPU speed will not be changed, once we measured it, 
but workload and number of tasks cannot be decided 
constantly. Workload of each host can be obtained 
by spawning each hosts a reasonable size of dummy 

task and measuring the elapsed time of the task. Be- 
cause PVM communicate messages via network, the 
time needed to communicate via network is also impor- 
tant factor in our case. Network time also varies much 
according to the network loads of each time. Network 
time for communicating with each host can be obtained 
by measuring the time elapsed during sending a con- 
stant size of message to each host and receiving the 

message back. 
Distributing tasks will increase the workload of each 

host, so we have to consider the workload after dis- 
tribute tasks to each host. Let Si be the CPU speed, 
Wi be the workload, Ni be the network load and di 

be the distribution of ith host, then we can define a 
balanced distribution measure 6i: 

hi = 5-i 
Wi + Ni + di 

(0 5 i 5 m- 1, m = number of hosts) 

m-l 

c di = N (where N is the number of tasks) 
i=O 

Once Wi and Ni is obtained, we can balance Si by 
controlling number di of ith host, so we can distribute 

proper number of tasks to each host. 

4.3. Training Process 

Two images, which are original image and noise-corrupted 
image, are sent to slaves to train stack filter. These 
images will be decomposed first and used to generate 
boolean function table. As mentioned above load bal- 
ancing result is the number of binary image planes to 
be processed by each host. 

Result of training function is a boolean function 
table, to which stacking property is not enforced. Al- 

though parallel algorithm of stacking property enforc- 
ing has been developed, the time needed to enforce 

stacking property in a serial manner outperformed par- 
allel programming in PVM, because network load is 
greater than actual processing time. 

The whole training function structure is depicted in 
figure 1. 

Master Slaves I 

Spawn tasks 
to slaves 

I 
Merging 

received 

boolcpn 

function tables 

Stacking property 

enforcing 

I 

Figure 1: Training function structure 

4.4. Filtering Process 

Often size of boolean table is very large, though it is 
trained with relatively small size of window. The mas- 
ter sends the positive boolean function table to slaves 
only once when it spawns slave processes. It repeats 



sending corrupt,ed image and receiving filtered image 
until the error between input and output converges. 

The whole filtering function structure is depicted in 
figure 2. 

size and window size are getting smaller, although com- 
munication overheads will not be changed. 

Master 

Spawn tasks 

lo slaves 

Send conuptod 

r image b slaves 

1 
Add result 

I image 

1 I 
Cahlatc 

image error 

Slaves 

B Use given lahle 

for filtering 

(-7 Decompose 

Figure 2: Filtering function structure 

5. EXPERIMENTAL RESULT 

The environment we used is composed of several dif- 
ferent architectures, which are SUN spare machines 

working on SUN OS, and Intel x86 machines working 
on LINUX. Table 1 shows the heterogeneous environ- 
ment we used for experiments. We used photo “Aerial” 

(256x256,8 bits) and the photo “Albert” (512x512,8 
bits) shown in figures 3(a) and 3(b) respectively, as 
noise-free original images. Stack filter was trained with 

images showed in figure 3(c) and 3(d) which are cor- 
rupted by impulses with 10% probability, each with 
3 x 3 and 4 x 4 windows. The filtered results of cor- 
rupted images used in training are depicted in figure 
4. 

Table 2 shows the absolute error per pixel between 
each filtered output and the original noise-free image, 
and the execution time of the algorithm for the aerial 

photo and Albert, respectively. To compare the re- 
quired network time and workloads of each hosts when 
the training process was performed, workloads and net- 
work time averaged by each process were also listed. 
Performance of this algorithm implemented on Mas- 
Par MP-1 parallel computer [l] was also showed for 
performance comparison. 

Implementation on PVM showed better performance 
for the image size 512x512 with window of size 4x4, 
but not good for image size 256 x256 and window of 
size 3x3. This result is due to the fact that the execu- 

tion time on slave host is getting smaller as the image 

Figure 3: Images used in experiments;(a) Aerial pho- 
tograph with 256 x256 resolution, (b) Albert with 
512x512 resolution, (c) Aerial , (d) Albert. Noisy im- 

ages in (c) and (d) are corrupted by impulsive noise 
with an occurrence probability of 0.1. 

6. CONCLUSION 

In this paper, new implementation of parallel adap- 
tive stack filter is developed using PVM. In order to 
maximize the merit of heterogeneous computing envi- 
ronment, a new scheduling algorithm which is based 

on the benchmarking appropriate to PVM computing 
environment was suggested. 

The performance is dependent on the number of 
hosts used and the performance of each host, but rea- 
sonable number of hosts and performance is sufficient 
to show a good performance. 

7. REFERENCES 

[l] J. Yoo, K.C. Fong, E.J. Coyle, G. B. Adams III 
“Fast algorithms for designing stack filters,” 31’st 
Annual Allert.on Conference on Communication, 
Control, and Computing, Monticello, IL Sep. 29 - 

Oct. 1 1993 



Architecture Number of Relative Workload Network time Distribution 
machines CPU speed (average) (average) 

SUN Spare 10 3 2000 2.14 0.30 30.0 

SUN Ultra Spare 3 4000 1.17 0.83 89.0 

Intel Pentium 120MHz 2 2000 1.26 0.52 29.5 

Intel Pentium 200MHz 2 6000 1.45 0.89 106.5 

Table 1: PVM slave host environment used for experiments 

Image Window Number of Absolute Training time Workloads Network time Error Time 
updates Error (seconds) (average) (average) (MasPar) (MasPar) 

Aerial 3x3 1OL 2.924 4.66 1.58 0.98 2.926 0.42 

4x4 2OL 2.613 20.69 1.47 2.67 2.605 18.6 

Albert 3x3 1OL 3.223 18.16 1.59 4.36 3.223 0.83 
4x4 2OL 2.705 40.12 1.50 5.02 2.705 70.4 

Table 2: Performance measured with Aerial and Albert images 

[2] Al Geist, A. Beguelin, Jack Dongarra, W. Jiang, 
R. Manchek, V. Sunderam “PVM : parallel virtual 
machine. A user’s guide and tutorial for networked 

ranked order operations,” IEEE Trans. on Circuits 
and Systems; vol. CAS-32, no. 5, pp. 445-450, May 

1985 

[5] P.D. Wendt, E.J. Coyle, N.C. Gallagher, Jr. “ 
Stack filters,” IEEE Trans. on Acoustics, Speech, 
and Signal Processing, vol. ASSP-34, no. 4, pp. 
898-911, August 1986 

[6] E.J. Coyle, J-H. Lin, M. Gabbouj, “Optimal stack 
filtering and the estimation and structural ap- 

proaches to image processing,” IEEE Trans. on 
Acoustics, Speech, and Signal Processing, vol. 37, 

pp. 2037-2066, Dec. 1989 
Figure 4: The filtered outputs by the application using 
PVM; (a) Aerialwith 3x3 window, (b) Albert with 3x3 
window, (c) Aerial with 4x4 window, (d) Albert with 
4 x 4 window. 

[7] J.-H. Lin, T.M. Sellke, E.J. Coyle, “Adaptive stack 
filtering under the mean absolute error criterion,” 
IEEE Trans. on Acoustics, Speech, and Signal 
Processing, vol. 38, pp.938-954, June 1990 


