
A FAST ALGORITHM FOR COMPUTING MORPHOLOGICAL
IMAGE PROCESSING PRIMITIVES

D.M.P. Hagyard, M. Razaz and P. Atkin *

School of Information Systems,
University of East Anglia,

Norwich, England

* Synoptics Imaging Systems Ltd,
Cambridge, England

ABSTRACT

Morphological image processing is performed by
successive application of Minkowski or Hit or Miss
primitive operations. A 2D structuring element is used to
specify the directions in which the primitives operate.
The success or failure of this type of image processing,
for many real world imaging applications, is critically
dependent on the efficiency with which these primitives
are computed. If the direct definition of the primitives is
used for their implementation, a brute force algorithm,
then the time taken to complete the operation of a
primitive is proportional to the number of pixels in the
structuring element. This paper presents a new fast
morphological transform (PMT) algorithm for computing
binary morphological primitives. The computation time
of the FMT is shown to be independent of the size of the
structuring element used. The algorithm is compared
against four other algorithms that we have implemented,
namely, the brute force method and three fast frequency-
domain convolution based algorithms for calculating
morphological primitives. Many different comparative
tests were performed, here we present some typical
experimental results. In practically all the experiments,
the PMT algorithm proved to be the fastest.

1. THE FMT ALGORITHM

The FMT algorithm operates on a 1D array of
binary pixels. To perform the morphological operations a
window, as wide as the structuring element used, is
passed along the array of pixels maintaining a count of
the number of on pixels underneath it. As the window

starts off the image, the number of pixels underneath is
initially set to zero. The window is then moved along the
array by adding 1 to the pixel count if the next pixel in
the array is on, and subtracting 1 from the pixel count if
the pixel under the window at the rearward end is on. By
modifying the count by the values of the incoming and
outgoing pixels, the procedure can move the window
along the array requiring only two comparison operations
at each step irrespective of the length of the window.
Once the window has moved the morphological
operations are produced by writing back a value to the
outgoing pixel. In the case of dilation, an on pixel is
written back if the number of on pixels under the window
is not zero, otherwise an off pixel is written. In the case
of erosion, an on pixel is written back only if all the
pixels under the window are on, otherwise an off pixel is
written back.

The PMT algorithm can be performed on a line of pixels
in approximately constant time with respect to the width
of the window. The algorithm requires two operations per
pixel allowing it to operate in linear time with respect to
the number of pixels in the image, and can be applied in
any direction which generates a line of pixels. Currently
the directions used are horizontal, vertical and the two
diagonals, although other directions are possible. Passing
a window over each line of an image in turn is equivalent
to dilating or eroding by a one-pixel wide line of the same
length as the window. A line structuring element can be
successively applied to an image to produce the same
result as a 2D structuring element. To calculate the
correct series of ID windowing operations it is necessary
to decompose the structuring element used. We have
implemented procedures to scan in the four basic

directions. The FMT algorithm is therefore capable of
handling all structuring element shapes which are made
up from these directions such as convex symmetrical
shapes comprising of horizontal, vertical and up and
down sloping diagonal edges. The information required
from the decomposition algorithm is the length of the
edges in each of the four directions which can be found
by applying an edge-following algorithm for half the
boundary of the structuring element. The edge lengths in
each direction are translated directly into the
corresponding window lengths.

2. THRESHOLDED CONVOLUTION

We also developed a new alternative fast
implementation for performing dilation and erosion based
on the use of convolution [l] in order to compare and
contrast with the performance of FMT algorithm. Briefly,
the convolution kernel can be set up such that its value
will be zero only when all the members of the kernel arc
over zero, or white, pixels in the image. If any of the
kernel members are over non-zero, or black, pixels of the
image then the values will multiply to more than zero and
the result of the convolution must therefore be more than
zero. By simply thresholding the convolution value so
that every non-zero value is written as black, the
convolution has the same result as the “hit” operation
described by Serra [2]. The main idea behind this
approach is therefore the following interpretation of these
primitives. Dilation is expressed as

V @ sltx> = h&V * sl(x>>

where 0 I z c 1, and h,(.) is a threshold operation
defined by:

0, xl7
hz(x) =

Lx)7

If the compliment of f(x) is given by f(x) = 1 - f(x), then
by the principle of duality, erosion can be defined by:

[fesl(x> = (h, W * slC#)’

foreveryOIzc 1.

The thresholding is straightforward to perform and
operates in O(n) time, where n is the number of pixels in
the image. Computing the convolution on the other hand
is the most time-consuming operation, and must be
implemented efficiently. Three different fast algorithms

were developed for implementing the binary
morphological operations in the frequency domain. An
efficient prime factor FFI [4,6] which we have developed
for 3D image restoration applications [7,8] was used for
calculating the Fourier transforms of the image and the
structuring element. The first algorithm uses a circular
convolution in the spatial domain, which is equivalent to
multiplication in the frequency domain. The main
condition for this algorithm to work is that the input
image and the structuring element must have the same
size. Once the convolution integral is evaluated, the result
is thresholded to complete the specific morphological
operation.

The morphological primitives such as dilation and erosion
are usually performed using a structuring element that is
considerably smaller than the input image, and therefore
the structuring element has to be padded up with zeros to
make it equal to the input image size. To overcome this
problem and speed up considerably the computation time
of the above circular convolution approach, two efficient
algorithms, Overlap-Save and Overlap-Add methods,
were implemented which take account of the small size of
the structuring elements and do not require padding up
with zeros. Briefly in both methods, the convolution
integral is divided into small subdivisions or slices in the
spatial domain. Circular convolution in frequency
domain is then used to calculate the integral in each
subdivision, and the separate convolution results are
recombined in the spatial domain. In circular
convolution, information that would be written off the end
of the sample array due to the ‘spreading’ effect of the
convolution will ‘wrap-around’ and appear at the
beginning of the array. The management of these wrap-
around errors is performed by the two methods in a
slightly different manner. The Overlap-Add method pads
the segment of the image so that the spreading of the
image under convolution does not fall off the end of the
sample and wrap-around on the output. The Overlap-
Save method on the other hand uses overlapping segments
of the image and discards those parts of the output image
that contain wrap-around errors.

3. RESULTS AND DISCUSSION

The FMT, brute force and three fast convolution-
based algorithms were all implemented on a DEC
workstation running Ultrix (the speed spec mark of the
system is 20), using ‘c89’ compiler with -02
optimisation. All the algorithms were first tested for
correctness by applying the morphological operations to a
single pixel. The result of applying the series of 1
dimensional structuring elements should be the same

shape as the original 2D structuring element. This was
the case for all algorithms, except the FMT when using
structuring elements consisting of only diagonal edges. In
the latter case, as demonstrated in Figure 1, the result was
a checkerboard pattern for dilation of an image by a 5 x 5
diamond structuring element. The checkerboard pattern
only appears if there is no horizontal or vertical
component in the structuring element as any horizontal or
vertical shift will be sufficient to fill in the holes in the
image. This difficulty was easily overcome. For
example, if we copy over the initial image with a dilation
by a 3 x 3 diamond, and then apply the FMT algorithm
with any diagonal windows shortened by 1, the result is
the same as dilating the pixel by a 9x9 structuring
element.

Dilated output by
Brute Force method

Dilated output by
FMTAlgotithm

Figure 1. The effect of using the Fh4T to dilate an
image by a S by 5 dianond structuring element

Next the speed of the FMT algorithm was compared with
the other four methods implemented. The tests were run
using a series of octagonal structuring elements ranging
from 9 x 9 to 255 x 255 pixels. The input image was 864
x 864 pixels and was a greyscale image thresholded to
produce an equal mixture of black and white pixels. For
all the algorithms the size of the output image was altered
by the morphological operations used, dilation increasing
the size of the output image and erosion decreasing it.
For both the Overlap-Add and Overlap-Save methods we
calculated the optimum slice size such that it allowed the
fastest computation of the output image. Figure 2 shows
the CPU time against the structuring element size for
different dilation experiments. The FMT algorithm as
can be seen is the fastest, and shows a nearly flat graph,
with a slight upward tilt due to the size increase of the
output image. This algorithm is thus independent of the
size of the structuring element, and is the fastest of all.
The Overlap-Add is the next fastest method, with the
Overlap-Save method being slightly slower. The

convolution method without the subdivision in the spatial
domain is slower still. The brute force method is the
slowest of all.

Figures 3 and 4 show the corresponding results for erosion
experiments. As can be seen the timing for the
convolution method, without using subdivision in the
spatial domain, is flat. This is because the erosion does
not increase or decrease the size of the image that has to
be input to the FFT algorithm. The size of image input to
the FFT is the size of the input image that can be
calculated in the most efficient manner. Both the
Overlap-Save and Overlap-Add algorithms take more
time as the structuring element size increases. This is
because the slice size must remain at least twice the size
of the structuring element. By the time the structuring
element size is large, the slice size increases to values
which make both overlap algorithms inefficient due to the
extra pixels that the algorithms must process.

--- ovsrlap.save

Figure 2. Graph of Time to dilate a 864 square image with

an octagonal structuring element of various sizes, using 5

different dilation algorithms.

For erosion, all three convolution based methods are
slower than the FMT algorithm. In this test it can be seen
that the brute force algorithm is faster than the other
methods for larger structuring elements. This is due to
the optimisation in our algorithm that allows the brute
force to stop scanning through the list of offsets for the
structuring element once an off pixel has been located in
the neighbourhood covered by the structuring element.
For an image with an even spread of black and white
pixels this means that 50% of the output pixels required
only one pixel test to be shown to be blank. If a worst

case input image is tested it can be seen that the brute
force algorithm takes far longer than the other methods.
Figure 4 shows the timing tests for erosion repeated with
a completely black image. Here the brute force method is
far slower than all the other methods.

‘*T I...... convdlmcm Mahod 1

lima @3 .’

so”-.._......._______........

40 . .

20 ”

Figue 3. Graph of Time to erode an 864 square imge,

approximately mixing ‘on’ and ‘off pixels equally, with

an octagonal structuring element of various sizes, using

5 different erosion algorithms

The results show that there is no algorithm that is superior
to all others for all situations. For dilation the FMT is the
fastest. This method can deal with situations where the
structuring element used is convex, symmetrical and

contains only vertical, horizontal and diagonal edges. For
structuring elements that are more complex the Overlap
Add method is the fastest. The superiority of this method
compared to the convolution method drops off as the
structuring element approaches the size of the input
image.

For erosion with symmetric, convex structuring elements,
again the FMT is the best method, however on sparse
images an optimised brute force method can be
surprisingly efficient. On less sparse images the brute
force method is very slow indeed. With more complex
structuring elements the thresholded convolution methods
are fast. The Overlap Add and Overlap Save methods are
more efficient when the structuring element used is
significantly smaller than the input image.

Figue 4. Graph of Time to erode a 864 black square

image, with an octagonal structuring element of various

sizes, using 5 different erosion algcrithns.

REFERENCES

[l] Kisacanin, B., Schonfeld, C., “A Fast Thrcsholded
Linear Convolution Representation of Morphological
Operations”, IEEE Trans. on Image Processing, Vol. 3,
No. 4, pp. 455-457, 1994.

[2] Serra, J., “Introduction to Mathematical
Morphology”, Computer Vision, Graphics and Image
Processing, Vol. 35, pp. 283-385, 1986.

[3] Balhut, R.E., “Fast Algorithms for DSP”, Addison-
Wesley, 1984.

[4] DeFatta, D.J., et. al, “Digital Signal Processing: A
System Design Approach”, 1988.

[5] Stockham, T.G., “High Speed Convolution and
Correlation”, Proc. AFIPS Spring Joint Computer Conf.,
Vol. 28, pp. 229-233, 1966.

[6] Rader, C.M., “Discrete Fourier Transforms When
the Number of Data Samples is Prime”, Proc. IEEE,
~01.56, pp. 1107-I 108, 1968.

[7] Razaz, M., Lee, R.A., Shaw, P.J., “A Nonlinear
Iterative Least Squares Algorithm for Image
Restoration.“, Proc. IEEE Nonlinear signal Processing,
pp. 4.2-4.6, 1993.

[8] Lee, R.A., Razaz, M. et al “A Comparison of Two
Nonlinear Constrained Algorithms for 3D Image
Restoration”, Proc. IEEE ISCAS, pp. 403-406, 1993.

