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ABSTRACT 

Morphological image processing is performed by 
successive application of Minkowski or Hit or Miss 
primitive operations. A 2D structuring element is used to 
specify the directions in which the primitives operate. 
The success or failure of this type of image processing, 
for many real world imaging applications, is critically 
dependent on the efficiency with which these primitives 
are computed. If the direct definition of the primitives is 
used for their implementation, a brute force algorithm, 
then the time taken to complete the operation of a 
primitive is proportional to the number of pixels in the 
structuring element. This paper presents a new fast 
morphological transform (PMT) algorithm for computing 
binary morphological primitives. The computation time 
of the FMT is shown to be independent of the size of the 
structuring element used. The algorithm is compared 
against four other algorithms that we have implemented, 
namely, the brute force method and three fast frequency- 
domain convolution based algorithms for calculating 
morphological primitives. Many different comparative 
tests were performed, here we present some typical 
experimental results. In practically all the experiments, 
the PMT algorithm proved to be the fastest. 

1. THE FMT ALGORITHM 

The FMT algorithm operates on a 1D array of 
binary pixels. To perform the morphological operations a 
window, as wide as the structuring element used, is 
passed along the array of pixels maintaining a count of 
the number of on pixels underneath it. As the window 

starts off the image, the number of pixels underneath is 
initially set to zero. The window is then moved along the 
array by adding 1 to the pixel count if the next pixel in 
the array is on, and subtracting 1 from the pixel count if 
the pixel under the window at the rearward end is on. By 
modifying the count by the values of the incoming and 
outgoing pixels, the procedure can move the window 
along the array requiring only two comparison operations 
at each step irrespective of the length of the window. 
Once the window has moved the morphological 
operations are produced by writing back a value to the 
outgoing pixel. In the case of dilation, an on pixel is 
written back if the number of on pixels under the window 
is not zero, otherwise an off pixel is written. In the case 
of erosion, an on pixel is written back only if all the 
pixels under the window are on, otherwise an off pixel is 
written back. 

The PMT algorithm can be performed on a line of pixels 
in approximately constant time with respect to the width 
of the window. The algorithm requires two operations per 
pixel allowing it to operate in linear time with respect to 
the number of pixels in the image, and can be applied in 
any direction which generates a line of pixels. Currently 
the directions used are horizontal, vertical and the two 
diagonals, although other directions are possible. Passing 
a window over each line of an image in turn is equivalent 
to dilating or eroding by a one-pixel wide line of the same 
length as the window. A line structuring element can be 
successively applied to an image to produce the same 
result as a 2D structuring element. To calculate the 
correct series of ID windowing operations it is necessary 
to decompose the structuring element used. We have 
implemented procedures to scan in the four basic 



directions. The FMT algorithm is therefore capable of 
handling all structuring element shapes which are made 
up from these directions such as convex symmetrical 
shapes comprising of horizontal, vertical and up and 
down sloping diagonal edges. The information required 
from the decomposition algorithm is the length of the 
edges in each of the four directions which can be found 
by applying an edge-following algorithm for half the 
boundary of the structuring element. The edge lengths in 
each direction are translated directly into the 
corresponding window lengths. 

2. THRESHOLDED CONVOLUTION 

We also developed a new alternative fast 
implementation for performing dilation and erosion based 
on the use of convolution [l] in order to compare and 
contrast with the performance of FMT algorithm. Briefly, 
the convolution kernel can be set up such that its value 
will be zero only when all the members of the kernel arc 
over zero, or white, pixels in the image. If any of the 
kernel members are over non-zero, or black, pixels of the 
image then the values will multiply to more than zero and 
the result of the convolution must therefore be more than 
zero. By simply thresholding the convolution value so 
that every non-zero value is written as black, the 
convolution has the same result as the “hit” operation 
described by Serra [2]. The main idea behind this 
approach is therefore the following interpretation of these 
primitives. Dilation is expressed as 

V @ sltx> = h&V * sl(x>> 

where 0 I z c 1, and h,(.) is a threshold operation 
defined by: 
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If the compliment of f(x) is given by f(x) = 1 - f(x), then 
by the principle of duality, erosion can be defined by: 

[fesl(x> = (h, W * slC#)’ 

foreveryOIzc 1. 

The thresholding is straightforward to perform and 
operates in O(n) time, where n is the number of pixels in 
the image. Computing the convolution on the other hand 
is the most time-consuming operation, and must be 
implemented efficiently. Three different fast algorithms 

were developed for implementing the binary 
morphological operations in the frequency domain. An 
efficient prime factor FFI [4,6] which we have developed 
for 3D image restoration applications [7,8] was used for 
calculating the Fourier transforms of the image and the 
structuring element. The first algorithm uses a circular 
convolution in the spatial domain, which is equivalent to 
multiplication in the frequency domain. The main 
condition for this algorithm to work is that the input 
image and the structuring element must have the same 
size. Once the convolution integral is evaluated, the result 
is thresholded to complete the specific morphological 
operation. 

The morphological primitives such as dilation and erosion 
are usually performed using a structuring element that is 
considerably smaller than the input image, and therefore 
the structuring element has to be padded up with zeros to 
make it equal to the input image size. To overcome this 
problem and speed up considerably the computation time 
of the above circular convolution approach, two efficient 
algorithms, Overlap-Save and Overlap-Add methods, 
were implemented which take account of the small size of 
the structuring elements and do not require padding up 
with zeros. Briefly in both methods, the convolution 
integral is divided into small subdivisions or slices in the 
spatial domain. Circular convolution in frequency 
domain is then used to calculate the integral in each 
subdivision, and the separate convolution results are 
recombined in the spatial domain. In circular 
convolution, information that would be written off the end 
of the sample array due to the ‘spreading’ effect of the 
convolution will ‘wrap-around’ and appear at the 
beginning of the array. The management of these wrap- 
around errors is performed by the two methods in a 
slightly different manner. The Overlap-Add method pads 
the segment of the image so that the spreading of the 
image under convolution does not fall off the end of the 
sample and wrap-around on the output. The Overlap- 
Save method on the other hand uses overlapping segments 
of the image and discards those parts of the output image 
that contain wrap-around errors. 

3. RESULTS AND DISCUSSION 

The FMT, brute force and three fast convolution- 
based algorithms were all implemented on a DEC 
workstation running Ultrix (the speed spec mark of the 
system is 20), using ‘c89’ compiler with -02 
optimisation. All the algorithms were first tested for 
correctness by applying the morphological operations to a 
single pixel. The result of applying the series of 1 
dimensional structuring elements should be the same 



shape as the original 2D structuring element. This was 
the case for all algorithms, except the FMT when using 
structuring elements consisting of only diagonal edges. In 
the latter case, as demonstrated in Figure 1, the result was 
a checkerboard pattern for dilation of an image by a 5 x 5 
diamond structuring element. The checkerboard pattern 
only appears if there is no horizontal or vertical 
component in the structuring element as any horizontal or 
vertical shift will be sufficient to fill in the holes in the 
image. This difficulty was easily overcome. For 
example, if we copy over the initial image with a dilation 
by a 3 x 3 diamond, and then apply the FMT algorithm 
with any diagonal windows shortened by 1, the result is 
the same as dilating the pixel by a 9x9 structuring 
element. 

Dilated output by 
Brute Force method 

Dilated output by 
FMTAlgotithm 

Figure 1. The effect of using the Fh4T to dilate an 
image by a S by 5 dianond structuring element 

Next the speed of the FMT algorithm was compared with 
the other four methods implemented. The tests were run 
using a series of octagonal structuring elements ranging 
from 9 x 9 to 255 x 255 pixels. The input image was 864 
x 864 pixels and was a greyscale image thresholded to 
produce an equal mixture of black and white pixels. For 
all the algorithms the size of the output image was altered 
by the morphological operations used, dilation increasing 
the size of the output image and erosion decreasing it. 
For both the Overlap-Add and Overlap-Save methods we 
calculated the optimum slice size such that it allowed the 
fastest computation of the output image. Figure 2 shows 
the CPU time against the structuring element size for 
different dilation experiments. The FMT algorithm as 
can be seen is the fastest, and shows a nearly flat graph, 
with a slight upward tilt due to the size increase of the 
output image. This algorithm is thus independent of the 
size of the structuring element, and is the fastest of all. 
The Overlap-Add is the next fastest method, with the 
Overlap-Save method being slightly slower. The 

convolution method without the subdivision in the spatial 
domain is slower still. The brute force method is the 
slowest of all. 

Figures 3 and 4 show the corresponding results for erosion 
experiments. As can be seen the timing for the 
convolution method, without using subdivision in the 
spatial domain, is flat. This is because the erosion does 
not increase or decrease the size of the image that has to 
be input to the FFT algorithm. The size of image input to 
the FFT is the size of the input image that can be 
calculated in the most efficient manner. Both the 
Overlap-Save and Overlap-Add algorithms take more 
time as the structuring element size increases. This is 
because the slice size must remain at least twice the size 
of the structuring element. By the time the structuring 
element size is large, the slice size increases to values 
which make both overlap algorithms inefficient due to the 
extra pixels that the algorithms must process. 

--- ovsrlap.save 

Figure 2. Graph of Time to dilate a 864 square image with 

an octagonal structuring element of various sizes, using 5 

different dilation algorithms. 

For erosion, all three convolution based methods are 
slower than the FMT algorithm. In this test it can be seen 
that the brute force algorithm is faster than the other 
methods for larger structuring elements. This is due to 
the optimisation in our algorithm that allows the brute 
force to stop scanning through the list of offsets for the 
structuring element once an off pixel has been located in 
the neighbourhood covered by the structuring element. 
For an image with an even spread of black and white 
pixels this means that 50% of the output pixels required 
only one pixel test to be shown to be blank. If a worst 



case input image is tested it can be seen that the brute 
force algorithm takes far longer than the other methods. 
Figure 4 shows the timing tests for erosion repeated with 
a completely black image. Here the brute force method is 
far slower than all the other methods. 
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Figue 3. Graph of Time to erode an 864 square imge, 

approximately mixing ‘on’ and ‘off pixels equally, with 

an octagonal structuring element of various sizes, using 

5 different erosion algorithms 

The results show that there is no algorithm that is superior 
to all others for all situations. For dilation the FMT is the 
fastest. This method can deal with situations where the 
structuring element used is convex, symmetrical and 

contains only vertical, horizontal and diagonal edges. For 
structuring elements that are more complex the Overlap 
Add method is the fastest. The superiority of this method 
compared to the convolution method drops off as the 
structuring element approaches the size of the input 
image. 

For erosion with symmetric, convex structuring elements, 
again the FMT is the best method, however on sparse 
images an optimised brute force method can be 
surprisingly efficient. On less sparse images the brute 
force method is very slow indeed. With more complex 
structuring elements the thresholded convolution methods 
are fast. The Overlap Add and Overlap Save methods are 
more efficient when the structuring element used is 
significantly smaller than the input image. 

Figue 4. Graph of Time to erode a 864 black square 

image, with an octagonal structuring element of various 

sizes, using 5 different erosion algcrithns. 
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