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1. INTRODUCTION 

A cyclic component signal is a nonstationary signal de- 
fined as superposition of a trend, of one or more almost- 
periodicities and an uncorrelated stochastic component. 

The cycles of almost-periodicities are not, in contrast 
to periodicities, the shifted replicas of each other, but 

vary over time in wavelength, amplitude and shape. 
The almost-periodic components of a signal are often 

referred to as cyclic components [l] . 

While the classical methods mainly decompose this 
kind of nonstationary signals into trend, cyclic and 

stochastic components using the information about the 
wavelength (the Box & Jenkins SARIMA model, Trend/- 
Seasonal Dynamic Linear Model [2], filter banks with 
fixed cut-off frequencies): they fail when this informa- 
tion is unavailable. This is the case when the signal is 
generated by an unknown physical process, and when 
the trend cannot be considered as piecewise stationary. 

If instead of being piecewise stationary, the trend is! 
say, ramplike, with randomly selected slopes over arbi- 
t,rary intervals, its spectral content can hurry the spec- 

trum of a low-amplitude cyclic component. In such cir- 
cumstances, the spectra1 techniques such as the Short 
Time Fourier Transform fail to provide the information 
about the wavelength. 

Recently, we proposed a new class of methods for 
determining the average cycle width in cyclic compo- 

nent [3, 41. Th ese methods are based a multiscale ex- 
traction of order statistics (OS), namely of extrema 

and/or quasiextrema. We applied it by adjusting only 
two parameters to decomposition of cyclic component 
signals in various applications such as heart-rate [5] 

and business statistics records. These parameters are 
the ‘maximum’ wavelength T,,, and the length of the 
observed block of data N. 

For a strictly cyclic component with period T and 
a large range of trend slopes, it can be shown that the 
average wavelength TAV converges to T for sufficiently 

large N. Hence, the method is unbiased. Sparse abrupt 
changes of the trend do not impair the estimation of 
TAV, Under constant signal level and arbitrary noise 
distribution (null hypothesis), the (false alarm) proba- 
bility of detecting a cyclic or composite signal can be 
shown to be independent of the functional form and 

the variance of the noise distribution. Accordingly, the 
method can be considered nonparametric under null 
hypothesis (no location shift). 

2. DESCRIPTION OF THE METHOD 

2.1. Detection of Characteristic Points 

A cycle can be represented as a pattern of nonzero and 
zero slopes. For example, a noiseless sinusoidal cycle 
contains one positive and one negative slope, as well 
as zero slopes in between, corresponding to the cycle 

extrema. Similarly, cyclic component signals of other 
functional forms contain zero-slope points, which obvi- 
ously correspond to the possible extremum points. so it 
is more difficult to find their extrema. One can extract 

consistent monotonic microtrends within a cycle, and 
find the time instants where these microtrends change 

their monotonic behaviour. Such time instants will be 
referred to as characteristic points. 

Let us suppose that we use a M + 1 - sampEe sliding 

window for detection of characteristic points, such that 

(M + 1)Ts = At, where T, is the sampling period and 

At the time duration of the interval covered by the 

window. 

Then, an ascending microtrend, for example, is de- 

tected as the following M + l-sample pattern: 

minIzl,-At m={~l, 

(k +(k-M+l) 
A 

. . . . . . . . . z(N) x(k) \ 
previour window {z},-a, 

(1) 



It can be shown that the pattern (1) is equivalent to 
the simultaneous increase in both extrema when a M- 
sample sliding window shift,s from position t - 1 to 

position t, which allows detection of consistent trends 
in noise. 

For the detection of a decreasing microtrend, the 
extrema in the pattern (1) should be replaced by their 
opposites. 

When running the sliding window over the signal, 
we form the following binary output i(t): if either an 
ascending or descending microtrend is detected, i(t) = 
1, otherwise i(t) = 0. The characteristic points are 

detected at time t as patterns {i(l - l), i(t)} = (0, 1) 

or {i(t - l),i(t)} = {l,O} 

2.2. Estimation of the Average Wavelength 

Let us consider the case of a cyclic component super- 
imposed on a ramp, as shown in Figure 1. For sim- 
plicity, the cyclic component is chosen to be a strictly 
periodic sinusoid with period T and amplitude a. The 
ascending ramp is assumed to have a slope b, such that 

0 < b 5 F. The (M + 1)-sample patterns allow the 
detection of cycle extrema for windows spreading from 

points A to B, C to D, and C to E, because B, D 
and E are the maxima, while A, C and C are the min- 
ima of the respective (M + 1)-sample windows. On 
the contrary, the windows CF and CG never meet the 
pattern (1). These windows have lengths equal to an 
integer multiple of the period T. For such windows, 
if the current sample x(k) is the maximum of the lat- 
est cycle, and hence the overall window maximum, the 
dropped out sample x( k - M) is the maximum of one of 
the past cycles, and cannot be the window minimum, 
so pattern (1) cannot be satisfied and no characteristic 

point can be detected. Similar behaviour of the cha- 
racteristic point, detector can be derived for descending 
trends with slope b, such that 0 > b 2 -y. 

‘By using a range of window sizes from Mmin to 
Mm,, >> T, the number of detected characteristic points 
over an interval of N samples, where N > M,,,, 
presents a cyclical behaviour, as presented in Figure 
2. The wave1engt.h T can be computed as the distance 
between two neighbouring peaks. 

2.3. Decomposition of Composite Signals 

As stated in the first section, a bottom-up strategy 

can be used to evaluate the general t,rend once t,he 
information about the wavelength is available. Un- 
der the assumption of small trend changes over a sin- 
gle wavelength, the general trend r(i) can be recon- 
structed as an irregularly sampled sequence, with the 
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Figure 1: The chamcteristic points cannot be detected 
with the windows whose size equals an odd multiple of 
the half-period, M+l = (2n-l)$, where n is a positive 
integer. Such windows are referred to as antiresonant. 

Note that the window lengths which allow the detection 
of chamcteristic points are denoted by asterisks, while 
those which miss the detection are marked with circles. 
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Figure 2: The number of characteristic points changes 
cyclically with window length M. The average wave- 
length, TAV, can be estimated by observing the distance 
between peaks. 

sampling period corresponding to the estimated wave- 

length. Assuming that a cycle is symmetrically dis- 
tributed around zero, the trend value r(K) for the ob- 
served Kth cycle in the data block is equal to the mean 
value of the composite signal over the wavelength TK: 

Ktl+J 
T(K) = c 44 (2) 

i=K-I%] 

where the cycle index I( can be expressed as the lowest 
integer larger than or equal to the ratio of the observed 
sample index i and the sum of all previous wavelengths 
TJ, J< K 



The assumption about symmetrical distribution of 
the cycle values around zero has been reported in the 
literature [2] as the zero-sum constraint. As a matter 

of fact, it implies that the mean value of the cyclic 
component w(i) over an interval (K - 1 F J , K + 1 T+ J) 
is zero. 

The trend values I can be interpolated between 
irregularly sampled points (K, r(K)) in order to be de- 

fined for all signal samples. The easiest way to do it is 
to use a linear interpolation. The lack of smoothness at 
the ends of linear segments can be removed by a small 
moving average filter (typically 3-sample long). 

Consequently, the cyclic component w(i) can be 
computed as 

w(i) = z(i) - T(i) (3) 

In the case of several cyclic components, the above 
procedure can be applied iteratively. For illustration, 
if two cyclic components wl(i) and wz(i) are present 

in the composite signal z(i), and if their wavelengths . 
differ 

1. 

enough, the following algorithm is proposed.- 

Segment the signal z(i) into blocks of data of N 

samples, N >> T,,,. 

2. Estimate the average wavelength of w1 (i) for each 
block of x(i). It is assumed that Al has shorter 
wavelengths than wz(i). 

3. Extract the trend Al by averaging the signal 
z(i) and interpolating over wavelengths. 

4. 

5. 

Extract WI(~) = z(i) - Al. 

Estimate the average wavelength of wa(i) for each 

block of am. 

6. Extract the trend r(i) by averaging the signal 

~1 (i) and interpolating over wavelengths. 

7. Extract wg(i) = Al - r(i). 

The extension to additional cyclic components is 
straightforward. 

3. EFFECT OF NOISE 

The opposite of a signal which is nonstationary with 
respect to location signal is a stationary one, i.e., a 

constant level corrupted with noise. Such a case will 
be referred to as null hypothesis. Let us find the prob- 
ability of detection of characteristic points under null 
hypothesis (the false alarm probability). From pattern 
(l), if the noise is independent and uncorrelated, the 
probability that the actual sample t(t) is the window 
maximum is h. Similarly, the probability that the 

sample ~(t - At) is the window minimum, under con- 
dition that +(t) is the maximum, is $. 

Then the probability of detecting a nonzero slope 
trend is n 

pT= (Mil)M (4 

Hence, the characteristic points are detected in station- 
ary noise with probability 

PC = pT(1 - PT), (5) 

independently of the noise disbribution. The number 
of (false) characteristic points in a data block of N 
samples is therefore 

NF = P,(N - ,t’f - 1) (6) 

If the ascending and descending microtrends are dis- 
tinguished, the number of false characteristic points is 
reduced. In such a case, once a characteristic point is 
detected at time k, no other characteristic point can 
be detected until time Ic + M + 1. As a matter of fact, 
the binary sequence i(t) between k and k + M has zero 
values, due to the trailing extremum z(k), which is no 
more located on one of the window edges, as in the 
pattern (1). Hence, the expected number of detected 
(false) characteristic points on interval of a finite size 
N > M would be 

N 
F 

= Pc(N - M - 1) 

l+PcM ’ 

The evolution of NF with increasing the window length 
M is shown in Figure 3 with dashed line. A nonstation- 
arity test can be performed by computing the x2 statis- 
tic with the obt,ained curve. Thus, the null hypothesis 

can be rejected or accepted wit.h certain probability. 

4. ILLUSTRATIONS 

4.1. A synthetic composite signal 

In the uppermost diagram of Figure 4, we show the de- 
composition of a synthetic composite signal, obtained 
by superposing a sinusoid of constant amplitude a = 1 
and period T = 10 over a trend consisting of a rect- 
angular impulse and the lower half of an ellipse. The 
signal contains N = 200 samples. 

In the middle and the lower parts of Figure 4, the 
extracted components are shown. The dotted line rep- 
resents the original components. As expected, the largest 
errors occur around steepest trends. 

Note that similar results could have been obtained 
using polynomial regression, but with a priori knowl- 
edge of the order of the polynomial model and of the lo- 
cation of the singular points in the signal. The Bayesian 



Figure 3: The number of characteristic points (the OT- 
dinate), detected f or a range of window lengths M (the 

abscissa) can be used for a nonstationarity test, which 
should be satisfied for composite signals. 

algorithms, such as the Dynamic Constant Model [2], 
can also produce satisfactory results using the strategy 

described in Introduction, but after adjusting parame- 
ters assigned to the trend and t.he periodicity variances. 
Note that these parameters do not correspond to the 
real component variances if the abrupt trend changes 

are to be distinguished from cyclic changes. 

4.2. An economic time series 

Economic time series often exhibit a more or less evi- 
dent cyclic behaviour. The car sales are known to ex- 
hibit a complex annual pattern. The most favourable 

season for car sales is the spring, and to a certain ex- 
tent, the autumn. The number of sold cars per month 
in United States, from January 1978 to February 1988 

[6] is shown in the uppermost diagram of Figure 5. The 
signal is scanned with a number of windows in order to 
detect the characteristic points. The window lengths 

range from three to sixty-four months. The series is 
found to be nonstationary with respect to location, us- 
ing the test described in Section 3. Hence, there are 
trends with nonzero slopes, and the wavelength estima- 
tion described above makes sense. The average cycle 
length is estimated to be around 12 months, namely 
12 f 4 mohths within 96% confidence intervals, under 
assumption of Gaussian distribution of distances be- 
tween successive peaks of detected characteristic points 
(drawn in the upper part of Figure 6). This indicates 

that the car sales follow a varying but consistent yearly 
seasonal pattern. On the basis of the estimated cycle 
length, the decomposition procedure described above is 
performed. In the middle and the lower parts of Figure 
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Figure 4: The original signal (top of the figure), the 
extracted cyclic and trend components (middle and bot- 

tom diagrams). The extracted components are com- 
pared with respective original components. Most of the 
time the extmcted components fit the original ones, ex- 

cept around abrupt trend changes. 

5, the extracted components are shown. 

For comparison, the Fourier periodogram for the car 
sales data is shown in Figure 7. The data are smoothed 
by the Blackman window in order to reduce Gibbs ef- 
fect. The abscissa in the bottom diagram is expressed 
as the number of cycles per year. The first two signif- 

icant lobes occur at rates of approximately one third 
and two cycles per year, respectively. The annual cy- 
cle component cannot be distinguished, mostly because 
of the spread of the ramplike trend spectral content 

over the Fourier frequencies. The Fourier periodograms 
should be mainly applied to detrended signals, neces- 
sitating thus an additional technique which is, in the 

presence of periodicities, a problem per se. 

5. REFERENCES 

(11 M.West. Bayesian inference in cyclical component dy- 
namic linear models. Journal of American Statistical 
Association, 90(432):1301-1312, December 1995. 

[2] M.West and J. Harrison. Bayesian forecasting and dy- 
namic models. Springer-Verlag, 1989. 

[3] A. Makarov. Discrete frequency tracking in nonstation- 
ary signals using joint order statistics technique. In Pro- 
ceedings of the IEEE-SP international symposium on 



x 10' Total monthly car sala in USA. 1878-1884 

11 

10 

9 

8 

7 

6 

1978.5 197a 1979.5 1980 1980.5 ,981 1981.5 la82 1982.5 19!%3 1983.5 

X10” Extracted cycles. average cycle widlh 12+-4mcmths 

I 

2 

0 

-2 

1978.5 ,979 1979.5 1930 ta80.5 iwi 1981.5 1982 taa2.5 $983 1983.5 

x 101 Trend eldracted using zero-6m cmslrainl 

11 i 

Figure 5: The original signal (top of the figure), the 
extracted cyclic and trend components (middle and bot- 
tom diagrams). 
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Figure 6: The number of characteristic points vs. win- 

dow length (top of the figure) is used as a nonstation- 
arity test. The stationarity with respect to location is 
rejected as a result the x2 test comparing the theoreti- 
cal and the actual number of characteristic points per 
month. 

Figure 7: The Fourier periodogram fails to correctly 

estimate the frequency (the inverse of the wavelength) 
of dominant cyclic component in the presence of trends. 


