FUZZY VECTOR MEDIAN DEFINITION BASED ON A FUZZY VECTOR DISTANCE

Vassilios Chatzis and Ioannis Pitas

Department of Informatics, University of Thessaloniki
540 06 Thessaloniki, GREECE
phone,fax: +30-31-996304, e-mail: [chatzis,pitas]@zeus.csd.auth.gr

ABSTRACT

In this paper, the Fuzzy Vector Median is proposed, defined
as an extension of Vector Median. It is based on a novel dis-
tance definition of multidimensional fuzzy numbers (fuzzy
vectors), which satisfy the property of angle decomposition.
The proposed distance of two fuzzy vectors depends on the
classicat distance of the fuzzy set centers and on the fuzzi-
ness that every fuzzy set holds. As a result the Fuzzy Vector
Median of a set of fuzzy vectors is affected by the presence
of fuzziness.

1. INTRODUCTION

Multichannel signals appear in many important signal pro-
cessing applications. Typical examples are the multispectral
satellite images, color images and signals that represent ve-
locity. Multichannel techniques, that have been proposed
rather recently, and consider the correlation of the channels,
seem to be the most appropriate way to process multichan-
nel signals. One of the most popular technique is the vec-
tor median filter, that inherently utilizes the correlation of
the channels and gives some desirable properties such as,
the zero impulse response and the preservation of the signal
edges [6].

However, any crisp value conceals a degree of uncer-
tainty that can be described by using fuzzy numbers [2]-
[5]. In this paper, the uncertainty of the vector value will be
taken into account by using fuzzy instead of crisp vectors.
The term fuzzy vector will be used in the following, to de-
scribe the extension of an n-dimensional crisp set C to an n-
dimensional fuzzy set X defined in an (n + 1)-dimensional
hyperspace, by using a membership function 4 : C — [0, 1]
[1]. The term fuzzy vector is usually found in the literature,
describing the notion of a vector of n 1-dimensional fuzzy
numbers. This notion could be appropriate to describe the
uncertainty in non-correlated data or when different degrees
of uncertainty is possible to be given to each signal channel.

2. ANGLE DECOMPOSED FUZZY VECTORS
(ADFV)

2.1. Definition of ADFVs

The fuzzy sets arc usually described by the union of their
a-cuts instead of the membership function. The a-cuts of
an 1-dimensional fuzzy set are the classical sets X %, where
z € X* & u(z) > o They can easily extended to de-
scribe multidimensional fuzzy sets. Thus, the a-cuts of an
n-dimensional fuzzy set will be the classical sets X%, where
x € X* & u(x) > «, and y is a function of nn variables. A
fuzzy set is called normal if 3x : p(x) = 1 or X! # 0. Itis
called convex if Vay, az € [0,1], a1 > ap & X C X2,
A normal and convex fuzzy set is called fuzzy number [7]-
[9]. A 1-dimensional fuzzy number will be called convex
fuzzy number when the corresponding a-cuts are convex
scts. In the following the Angle Decomposed Fuzzy Vectors
(ADFVs) will be defined as a subset of multidimensional
fuzzy numbers and will provide us the ability to define a
distance between them.

Let X be an n-dimensional fuzzy set, px (x) its mem-
bership function and X the corresponding a-cuts. Con-
sider also that there is only one vector x, where px(X.) =
1. The vector x. will be called the center of the fuzzy set.
Consider alson — 1 angles 8 = (8;,i = 1,2,...,(n — 1)),
; € [0,7). The centre of the fuzzy set x. and each an-
gle 8; determine a hyperplane. The union of n — 1 hyper-
planes is a straight line (direction) in the n-dimensional hy-
perspace, where a function y; can be defined as y;(z,8) =
px(zi(z,8),x2(z,9), ..., Tn_1(z,8), ). This function
can be considered as a membership function of an 1-dimen-
sional fuzzy set X . Then, the ADFVs are defined as fol-
lows:

Definition 1: An n-dimensional fuzzy set X is an An-
gle Decomposed Fuzzy Vector (ADFYV), if, for each vector
of angles 8 = (81,0;,...,0,_1), the 1-d fuzzy set X% =
{z, p1(z,8)} is a convex fuzzy number.

An example of a 3-dimensional ADFV and the angle de-
composed 1-d convex fuzzy numbers is shown in Figure 1.
It is easy to prove that any ADFV is a fuzzy vector. We
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Figure 1: Two 1-d convex fuzzy numbers X0Y? com-
ing from two 3-d ADFVs XY when the angle vector § =
(81,8;) is determined.

can also prove that if  is a n — 1 — k vector the function
ue(z1,za, ..., 2k, 0) can be considered as a membership
function of a k-dimensional ADFV. The use of ADFVs give
us the ability to establish a one to one correspondence be-
tween the points of two ADFVs that limit their a-cuts on a
certain direction. By using this correspondence, a distance
measure between multidimensional ADFVs will be defined.

2.2. ADFVs distance definition and properties

Let us assume that X, Y are 1-d fuzzy numbers, symbolized
as X =, [z, 27, Y = U, -[uf, y7], where zf*, yj* and
g, yZ, are the lower and upper limits of the corresponding
o-cuts. Then a distance can be defined as:

1
DX, Y] = [ [lafoafll + ladselldac 1

where ||., .|| is a distance norm of classical numbers. This

distance definition can be extended to n-dimensional AD-

FVs as:

D.[X,Y] = / / / (11X, yr2l|+
2(n - 1)7" 6,=0 0n_1=0Ja=0

+1%2%, ¥2%|)dodBn—1 . . . d: )

where xl , y,"‘ and x%<, y2* are the lower and upper

points that limit the a-cuts of the corresponding 1-d X?
fuzzy numbers, and ||., .|| denotes a distance norm between
classical vectors. In the following the a-cuts of the X
fuzzy vectors will be called fa-cuts and will be symbol-
ized as X?*. The use of ADFVs guarantees that every point
that belongs to the line segment from x{* to x8* belongs
also to the fo-cut.
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Figure 2: The upper x%%, y9* and lower x{ s 9o [imits of
two fa-cuts X9, Y92, the centers of the ADFVs ., y. and
the distances between them.

Let X, Y, Z be ADFVs. We can prove that the follow-
ing distance properties are valid:

e DX, Y]=06X=Y
e D,[X,Y] = D,[Y,X]
o Du[X,Z] < Do[X, Y] + D,[Y,Z]

2.3. Euclidean fuzzy distance

Let us choose the Euclidean norm to define a distance be-
tween two classical n-dimensional vectors x = (z1, 22,

-,.’En) andy = (yl,y%"'syn) as
d(x,y) = (@212 +...+(@n —9n)* O)

Then the Euclidean fuzzy distance can be defined by us-
ing (2) and (3). When the fuzzy vectors are described by
using a-cuts, for a given o and a vector of angles § =
(61,82,...,6,_1), two points x{* and x? are defined, whi-
ch are the lower and the upper limits of the correspond-
ing @a-cut. The proposed Euclidean fuzzy distance is the
normalized integral of all the distances dz(xl ,yl “) be-
tween the lower limits, and the distances d?(x%%,y9%) be-
tween the upper limits, for every o € [0,1] and 6; € [0, 7),
1=12,...,n—1.

Let us symbolize as df;" the Euclidean distance between
the lower limit xf‘" of the fa-cut and the center x. of an
ADFV X, as d% the Euclidean distance between the upper
limit, xg"’ of the 8a-cut and the center x. of an ADFV X,
and as dgy the distance between the centers of two ADFVs
X,Y. These distances, which can be calculated by using
(3), are shown in Figure 2.

It is easy to prove that the distance between two lower
limits of two ADFVs a-cuts is equal to:

d(x),yi®) = (do"— ) +

(1 —-1)%+

+2(dfe — df2) zyHcos )+ dZ, )



where 6;,7 = 1,2,...,n — 1 are known angles 6; € [0, ).
The distance between two upper limits of two ADFVs a-
cuts is equal to:

d2(x]®,y2®) = (dlg — diy)® -

n-—-1

+2(d? - do"‘ dey H cos(6;) + dzy )

i=1

using (2),(4) and (5) the Euclidean fuzzy distance be-

tween tiwo ADFVs XY is given by:

D, X, Y] =d? +d% (6)

n L i Ty fzy hd

where
2 _ 1 i /" / 9a 2
df:l:y 2(,’, —_ 1\1'. Jo o [(d +
\ I Jey=0 Jo,_1=0Ja=
+(d€c¢ _ d()a) +
n—1

+2dzy ]—[ COS 0 )(d — dfg + df_; ]dadan 1...doy

i=1

)]

The above equation shows that the proposed Euclidean
fuzzy distance is the classical Euclidean distance between
the centers of two ADFVs X,Y, modified by a factor that
depends on the fuzziness that every ADFV holds. The Eu-
clidean fuzzy distance can be considered as a generalized

l;'UCllGean distance Slnce equa[lon (/) ylelas to U when mc
ADFVs are crisp vectors (df¢ = df® = dig = %% =0,

YA, Tha
v9;,a). The Euclidean fuzzy d:stance is also eq"ﬂ‘ to the

classical Euclidean distance of the ADFVs centers when the
fuzziness of ADFV X is equal to the fuzziness of ADFVY
for every angle and a-cut (df* dly , d9%% = d%2,v8;, ).
Generally, the Euclidean fuzzy distance can be equal to,
greater or less than the classical distance of the ADFVs
centers, depending on the ADFVs membership functions.
Figure 3 shows the distance between two 2-d ADFVs de-
pending on their fuzziness. The ADFVs X, Y are assumed
to have eiliptical a-cuts with axes f2), f2, and f, fi5 re-
spectively, which are reduced linearly from their maximum

values fz1, fe2, fy1, fy2 fora = 0, to zerofora = 1. In

Figure 3a the distance of the centers is 100, f2; and f vary
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the more the fuzzmess of the two ADFVs dlffers, the more
their fuzzy Euclidean distance is greater. In special cases,
when the fuzziness is not uniformly distributed around the
center of a fuzzy set, but it is greater towards the center of
the other fuzzy set, the fuzzy Euclidean distance can be less
than the classical Euclidean distance.

£
a Jg2
nte
1

distance
102

(b)

Figure 3: (a) The distance of two ADFVs X, Y depending
on their fuzziness f;1 and fy2 when f2, =
[%"l‘ (b) The distance of two ADFVs X,Y depen

2
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the fuzzmess of Y, fy1 and fyz when fg1 = 10, fgo 30.

3. FUZZY VECTOR MEDIAN DEFINITION AND

PROPERTIES
Based on the previously defined distance of ADFVs, we ex-
tend the classical definition of the vector median as follows
Definition 2: The Fuzzy Vector Median (FVM) of X, X,,
.» X, ADFVs is the ADFV Xy such that XFVM €

{X;,i=1,2,...,n}and forall j =1,2,...,n
n n

> DalXpym, Xi] € D _DalX;, X ®)

i=1 i=1

A straightforward algorithm to find the FVM of a set of
fuzzy vectors is the following:

¢ for each fuzzy vector X; compute the sum of the dis-
tances S; to all other vectors:

n
=\"p.Ix. x.
) nidhg, Ay

1
i

o~
0
~—

n
=1

W,

e Find k such that S is the minimum of S;, i = 1, 2,
..

o The Fuzzy Vector Median is X}.



When the Euclidean fuzzy distance is used the Euclidean

FVM is dafined Similarly to tha claccical vactar madian
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the Euclidean FVM Xy does not minimize the uncon-
ditional expression:
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but, by definition, it minimizes the same expression, when
Y should be one of X;. The proposed distance of two fuzzy
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ters, and on the fuzziness that every fuzzy vector holds. As
a result the Fuzzv Vector Median of a set of fuzzv vectors is
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affected by the presence of fuzziness. The fuzzy vector, that
its center is the classical vector median of the fuzzy vector
centers, may be substituted by another fuzzy vector when its
fuzziness is different from the fuzziness of its neighbouring
vectors.

In the following, the condition which should be valid to
take place such a substitution will be found. Let us symboi-
ize as d,] the distance of the centers of two ADFVs X, X;

llldl can UC bdlbuldlﬁu Uy \J), auu uf LllC Ulbldllbc UCPCIIU'

ing on the fuzziness given by (7). The classical vector me-
dian of the centers of the ADFVs can be found hv calculat-

ing the sums
n n
Se.- = Zd’LJ = Zdz(xci)xc_j) (]1)

Without loss of generality, we can assume that S; < Se,,,,
Vi = 1,2,...,n — 1, which means that x,, is the classi-
cal vector median of the centers. Thus, by using (11) the
following 1s also valid:

Seiiry — Se: = Clagryi >0

Cli+k)

k=1,....n—i (12)

The ADFV X will be the FVM if and only if S, ,, <
e,-,] =1,2,...,n,j # i+ k. By using (6) and (12) it can
be proven that the above condition is equivalent to:

n n
> iy < DAy — Clatryi (13)
=1 i=1

The above equation shows that, the vector that corresponds
to the classical Vector Median is the most probable candi-
date to be the Fuzzy Vector Median since C;; = 0. It is also
more probable to be substituted by its ordered neighbours,
and the probability is reduced as the classical distance of the
centers C increases.

4. APPLICATIONS

P, Voo pony siaiialVlo o X e o T

VCL[UI’ IIlCUldIl llllCrb are usuauy UbCU w Icimove urlpuracb
from noisy color images. In the following, we shall present

experimental results when the FVM will be applied on the
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noise and mixed impulsive and Gaussian noise. The FVM,
that uses fuzzy Euclidean distance, was applied ona 3 x 3
window. Fuzziness was inserted to the problem by using the
information that the neighbouring pixels hold. The chro-
matic RGB values of the nine pixels of each window was
ordered and the average of the differences, between each
pixel chromatic value and its two closest values, was used as
a measure of the pixel fuzziness. It is obvious that the fuzzi-
ness of a pixel changes as the window moves, and when the
size of the window is modified. By using this kind of fuzzi-

nece tha Fuzzv Vactor Madian filter removec the imnulcive
nesSs, i FUZZYy VECIOT ViChGian AT rémoves i impuisive

noise and preserves the edges with better performance in
comparison with the Vector Median filter. Moreover, FVM
reduces the local variances of the filtered image in homoge-
neous regions.

Let us symbolize as r°, g°, b° the chromatic RGB values
of the original image, as r™, g™, b™ the values of the noisy
image and as 7, g/, b/ the values of the filtered image. The
Signal to Noise error Ratio (SNR) defined as:

SNR = =2+ (g% — g7)2 + (b° — b/)?
- (ro —rm)2 4 (go — gn)2 + (bo — bn)2

(14)

was used to demonstrate the better performance of FVM

versus classical VM. The results of the FVM and VM filters

applied on the image lenna, corrupted with different values
a2 e d FMlacaninie oA mma smaem s Py | T-l1. 1

Ul uup'urarvc auu Udubbldll llUle, alc pleClllCU lll 1avic 1.
It shows that the FVM reduces the error ratio in all cases.

The local variances are calculated for gvery pnml h\/ ncmc

a 3 x 3 window centered on it. Let 7, g,b be the average
of the RGB values of the pixels that belong in the window.
Then the local variance of a pixel is:

o*k, D) = (! =P+ (¢’ - 9>+ (' - (19

The average of the local variances 7 of all the p X
SO

sented in Table 2. It shows that the FVM als
local variances in most cases.

Figure 4a shows the result of the FVM filter applied on
a corrupted with mixed impulsive (p=0. 2) and Gaussian
{s = 10) noise. The locai variances of the VM and FVM
filtered images are shown in Figures 4b and ¢ respectively.
Figure 4d shows the differences between the local variances
of the FVM filtered images shown in Figure 4b and c. The
variances are subtracted and the red channel corresponds to
the positive differences, where the FVM local variances are
greater. The green channel corresponds to the negative dif-

farancae whara tha VR lanal varinncace ara graatar Tha
ICTUIICUS, WiV uib vivi aUtdl varialivos aiv givdadel, 1av

blue channel corresponds to the local variances of the orig-
inal lenna (edges). It is shown, that there are many cases
where the FVM local variances are greater on the edges
(pink pixels) something that is desirable and means that the

FVM filter preserves the edges betier than VM filter does. It
is also shown that the VM local variances are greater (green



Table 1: The SNR of the FVM and VM filters applied on the

image lenna, corrupted with different values of impulsive

(percentage of corrupted pixels p=0.1, 0.2) and Gaussian
noise (noise standard deviation s=0,10,20).

Impulsive | Gaussian || FVM VM

noise (p) | noise (s) || (SNR) | (SNR)
0.1 0 0.1850 | 0.1853
0.1 10 0.1901 | 0.1910
0.1 20 0.1997 | 0.2004
0.2 0 0.1067 | 0.1070
0.2 10 0.1125 | 0.1134
0.2 20 0.1283 | 0.1293

Table 2: The average of the local variances @ when the FVM
and VM filters are applied on the image lenna, corrupted
with different values of impulsive (percentage of corrupted
pixels p=0.1, 0.2) and Gaussian noise (noise standard devi-
ation s=0,10,20).

Impulsive | Gaussian | FVM VM

noise (p) | noise (s) @ @)
0.1 0 6.603 | 6.604
0.1 10 8.590 | 8.609
0.1 20 11.412 | 11.410
0.2 0 7.398 | 7.417
0.2 10 9.564 | 9.600
0.2 20 12,751 | 12.757

pixels) in most cases in homogeneous regions something
that is undesirable and is reduced by using FVM filter (red
pixels).
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