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Abstract - In this paper the properties of 
the joint distribution function of the 
outputs of stack filters with common 
arguments are examined. The special 
characteristics of these functions are 
discussed. Different approaches for 
characterising them are considered. 
Empirical tests are performed and 
reported. Different ways of extracting 
useful correlation information are 
compared. 

INTRODUCTION 

Stack filters, including median filters have 
been applied to a variety of applications, c.f. 
[3], since median filtering was introduced by 
Tukey in 1974 [6]. These filters have some 
useful properties, not shared by strictly linear 
systems, e.g. robustness in the presence of 
heavy tailed noise. They are also well suited 
for image processing, where their non-linear 
effects are useful. The standard median filter, 
for example, removes impulsive noise and 
preserves sharp edges. Many median type 
filters, e.g. weighted median and order 
statistic filters, can be thought of as special 
cases of stack filters [3] and thus expressed 
as combinations of MIN- and MAX- 
operations. Threshold decomposition and the 
stacking property [2] provide a useful link 
between stack filters and positive Boolean 
functions. Statistical properties of median 
and stack filters have been studied in [l], [2] 
and [33. 

In this paper we concentrate on examining 
the joint distribution of two stack filters. A 
formula for computing the cumulative joint 
distribution function has been derived [4], 
assuming independent input distributions. 
The output distribution function can be 
expressed as piecewise defined multinomial 
of the input distribution, if iid. input is 
assumed. For two stack filters this means 
that the output distribution is defined by two 
different multinomials, and that there is 
discontinuity of derivative on the diagonal. 

This discontinuity has an interesting effect 
when an expression for the corresponding 
joint density is derived - the density function 
will have to include the Dirac delta function. 
An infinitely small area on the plane, a mere 
line, possesses a finite portion of the 
probability mass. 

In examining median filtered sequences the 
joint distribution of two subsequent samples, 
(for example), behaves in the above 
described way - the same input sample can 
be chosen to output several times. We will 
investigate the properties of the 
autocorrelation function of such sequences, 
and discuss the alternative ways of defining 
it. One such alternative is that described by 
Maragos [5]. We will also propose a new 
way of defining a useful measure of 
correlation, a way which is especially suited 
to signal processing problems involving 
median type filters. We will define this 
correlation measure so that it will estimate 
the amount of dependence caused by median 
filtering, independent of the input 
distribution. 

We will report the results of simulations 
comparing these methods and the traditional 
cross correlation. 

JOINT DENSITY FUNCTIONS OF STACK 
FILTERS 

The cumulative joint distribution function of 
the output of two stack filters can be 
expressed as piecewise defined multinomial 
of the input distribution, if iid. input is 
assumed [4]. This means that the output 
distribution is defined by two different 
multinomials. The two functions are equal 
on the diagonal, this can be seen by setting 
s=t in (from [4]) 
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The derivatives of the two multinomials, 
however, are not equal on the diagonal. 

This discontinuity has an interesting effect 
when an expression for the corresponding 
joint density is derived - the density function 
will have to include the Dirac delta function. 
An infinitely small area on the plane, a line, 
possesses a finite portion of the probability 
mass (Figure 1). 
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Figure I. Joint distribution of samples one step 
apart in a 4000 point sequence, formed by 
filtering a (0.1)~uniformly distributed input signal 
with the 3-point median filter. 1332 points are 
lying on the diagonal line. 

Let us now proceed to derive the joint density 
function of two stack filters. For simplicity, 
let input arguments he (O,l)-uniformly 
distributed iid. random variables. We can 
now restrict our attention to a unit square in 
(s,t)-plane. The results can be generalised for 
any continuous distribution. Let 
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where D denotes the Dirac delta function 
with the properties 
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Differentiating (5) with respect to t we get 
the joint density function, 

YSf(s,t) = Y{‘(s,t) 

+H(s-t)(Y;‘(s,t)-Y’,S’(s,t)) (10) 

- D(s - t)(Y; (s, t) - Yl” (s, t)). 

The density function (10) can be used, for 
example, to calculate the probability P of the 

event that two different stack filters, sharing 
common arguments, product equal outputs. 



This can be done either by integrating over 
the density function, disregarding the 
diagonal, that is 

l- P = j j(Yy’(S,f) 
00 

+ H(s - t)(Y;‘(s,t) - Y;‘(s,t)))dtds 

(11) 

or by setting r=t=s and thus integrating over 
the diagonal part, 

P=]-(Y&r)-Y)yr,r))dr (12) 
0 

Example I. Let the (0, l&uniformly 
distributed iid. input signal be filtered with 
the three point median filter, and let us 
investigate the joint distribution two 
consecutive samples in the output sequence. 
By [4], their joint cumulative distribution 
function will be 

Y(s, t) = 

I s* +4s*t-2s2t2 -2s3,sI t (13) 

I t* +4t*s-2t2s2 -2t3,s> t. 

Differentiating with respect to s, and 
applying (5) we get 

-$Y(s,t) = (2s+8st -4d - 6s’) 
(14) 

+ H(s - t)(-8st - 2s + 6s2 + 4t * ), 

and differentiating with respect to t we get 
the density function 

Y” (s, t) = (8s - 8st) 

+ H(s - t)(-8s + 8t) (15) 

- D(s - t)(-8st - 2s + 6s2 + 4t *). 

Applying (11) we get I-P=23, and applying 
(12) P=1/3. 

The finite probability mass on the diagonal 
line can be interpreted as follows: the two 
stack filters have a certain probability of 
producing exactly equal outputs - even for a 
continuous input distribution. This would not 
happen in the case of two different linear 
filters. The fact that stack filters always 

produce one of the input samples to the 
output, accounts for this phenomenon. 

CORRELATION MEASURES 

We will consider three correlation measures, 
and apply them to template matching, 
namely linear cross correlation (L2- 
correlation), morphological correlation (Ll- 
correlation) [5], and a measure based on 
exact equality of samples (EQ-correlation). 

Let fin) be an arbitrary signal and g(n) a 
pattern to searched from f. To find the best 
match, an error criterion such as mean 
squared error (MSE) can be minimised 

E,(k)=C.(f(n+k)-g(n))*. (16) 
iXW 

Since (a-b)2=a2+b2-2ub, minimising (16) 
equals maximising 

Yf, (k) = Cf(n + k)g(n), (17) 
IIEW 

yielding the classical (sum of products) 
linear correlation. 

Using the mean absolute error (MAE) 
criterion 

E,(k)=~~lf(n+k)-g(n)l, (18) 

and noticing that la-bl=a+b-2min(a,b), we 
can define morphological correlation [5] 

pa(k) = n~miW(n + khg(n)). (19) 

Correlation based on measuring the number 
of exactly equal samples, the so called EQ- 
correlation can be defined by 

a,(k) = C(fCn + k) = g(n)), (20) 
PEW 

where the result of sample-wise comparison 
is taken to be real 0 or 1. 

It has been shown in [5] that morphological 
correlation yields sharper peaks than linear 
correlation. EQ-correlation, on the other 
hand, is severely handicapped in many 
situations by the requirement of exact 
matching. Still, it may be useful in situations 



where sample amplitudes are restricted to a 
small number of discrete values (image 
processing). Another useful application may 
be examination of sequences filtered by stack 
filters. EQ-correlation is also totally 
independent of the shape of the continuous 
input distribution. 

Let us now consider statistical 
characterisation of the density function (lo), 
using the above described correlation 
measures. Let 

Y” (s,t) = 
(21) 

P(s,t) + H(s- t)Q(s,t) + D(s- t)R(s,t), 

where P,Q and R are multinomials. Linear 
cross correlation can now be calculated as 

1 1 

E(st) = jjstY”‘(s,t)dsdt (22) 
00 

and, denoting 

min(s, t) = s + H(s - t)(t - s), (23) 

morphological correlation as 

E(min(s,r)) = jlmin(s,t)~“(s,t)dsdt(24) 
0 0 

EQ-correlation is defined by (12), measuring 
the probability mass lying on the diagonal. 

We can now continue with example 1, and 
calculate the autocorrelation function of the 
3-point median filter analytically from the 
density function (15), recalling the output 
distribution functions from [4]. The results 
are illustrated in table I. 

Correlation of samples k steps apart 

k=O 1 2 3 

L2 - con-. x0 %3 8%5. % 

Table I. Correlation of (O,I)-uniformly distributed 
iid. sequence, filtered with 3-point median filter. 

EXPERIMENTS 

The results presented in table 1. Are verified 
empirically. Autocorrelation functions are 
calculated by tiltcring a 2000-point sequence 
of iid. (O,l)-uniformly distributed input 
signal with the 3-point median filter. Then a 
portion of the output signal, (samples 800- 
1199), are matched against the filtered 
signal, applying L2-, Ll- and EQ-correlation 
criteria. a-figures show the whole 
autocorrelation function, and b-figures a 
zoomed-in version. 

028 

0.27 

0.28 

i 

0.25 

0.24 

0.23 

I I’ 

o.nl I 
0 

Figure 2a. 
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