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ABSTRACT

Nonlinear filters which are utilized rank-order
information and temporal-order information, have
many proposed, in order to restore nonstationary
signals which are corrupted by additive noise. LWOS
(Linear Combination of Weighted Order Statistics)
filters [1] which also utilized two informations , and
have properties of efficient impulsive and non-
impulsive noise attenuation and sufficiently details and
edges preservation.

In this paper, we propose a data-dependent LWOS
filter whose coefficients change based on local
statistics.

1. INTRODUCTION

It is well known that median filters are very useful for
image restoration. The success of median filters is
based on two properties: edge preservation and
efficient impulsive noise attenuation. However, the
median filter is not a perfect filtering operation. It may
remove important image details and not sufficiently
attenuate non-impulsive noise. The main reason is that
the median filter uses only rank-order information of
the input data within the filter window, and discards
its original temporal-order information. In order to
utilize both rank- and temporal-order information of
input data, several classes of rank order based filters
have been developed in recent years, such as LI
filters[4], Weighted median filters[2], FIR-
WOS(weighted order statistics) hybrid filters[3].

J. Song and Y. H. Lee have also proposed a filter
whose structure provide a unified framework for
representing both linear FIR and median type
nonlinear filters called linear combination of weighted
order statistics (LWOS) filters[1}. The LWOS filter is
combination of L-filters and WOS filters. In this paper,
we propose adaptive LWOS filters based on local

statistics called data-dependent LWOS (DD-LWOS)
filters. The DD-LWOS filter is a combination of the
data-dependent o« -trimmed mean filter[S] and the
data-dependent weighted median filter[6]. They are
useful in image processing because for typical image
each part differs sufficiently from other parts. Several
design examples are presented showing the good
performance of the proposed filter.

2. DD-LWOS FILTERS
2-1 LWOS FILTERS

The output of LWOS filters is given by
J
y(n)zzlj'x(j/j)(n) (1)
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where /; is a coefficient of L-filters and X»(n) is j th
largest samples of in a row vector X(n) defined by

X(n) =[w_yOx(n— N),- -, wpQx(n), -, Wy Ox(n+ V)]
(2)

w<x denotes the repeating operation, i.c.,

wtimes
wlx =x,-+x 3)
J is a degree of vector X(n) as

N
J=Yw ).
i==N
The class of LWOS filters encompasses WOS and L-
filters.

Examples:
Consider a filter windows length 5 LWOS filter with
weights as
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and an input vector
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Then X(n) given by
X(n)=12,3,7,7,7,6, 8].

The output of LWOS filter calculated by

7
y=31;-Xm=01-2+01-3+01-6+

j=t

(04+01+0.1)-7+0.1-8=61

2-2 DD-LWOS FILTERS

Data-dependent non-linear filters useful in image
processing because for a typical images are non-
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such as data-dependent WM filters[6],[7], and data-
dependent L-filters[S], are proposed. In this paper we
propose a novel data-dependent filter called DD-
LWOS filter. The DD-LWOS filter is a combination of
the data-dependent o -trimmed mean filter[5] and the
data-dependent weighted median (WM) filter[6]. The

output of DD- LWUD filters is defined Uy

J(n)-a(n)J(n)
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where X(j,,(n)) (n) is j th largest samples of in a row
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vector (n) defined by

X(n) = (w_y (MOx(n—N),-,

(6).
W, (n\Ov(n\ s (mOx(n+ N
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The number of elements of vector X (n) is given by
J(n)= Zw (n) .
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Thus, J(n) is changed at each point “n”. Equation (5)
shows the definition of data-dependent o -trimmed

mean filters. The parameter “ o¢(n) - J(n)” is defined

w

n
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an)-Jn)=[K®n) - (J(n)-1/2] (8)
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where e, = |x(n +k) - x(n)l and @, is a standard
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distance between x(n) and x(n+k). Wy is an integer.
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by the local statistics, and is calculate by

2
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Coefficient K(n) lies between 0 tol when the local
variance changes. In areas with low signal to ratio (i.e.,
smooth areas corrupted by non-impulsive noise) , since
K(n)=0 then w,(n) is close to one and
“a(n)-J(n)” is close to zero. Thus, DD-LWOS
filters almost equal to mean filters. On the other hand,
in areas with high signal to noise ratio,
“a(n) - J(n)” is close to (J(n)-1)/2 then, DD-LWOS
filters equal to WM filters with high center weight



w,(n) which can preserve signal details. DD-LWOS

filters can remove non-impulsive noises while
preserving signal details.

2-3DD-LWOS FILTER WITH
IMPULSE NOISE INFORMATION

When the point “n” is corrupted by impulsive noise,
DD-LWOS filter tend to preserve this impulse noise.
Because, the information E, is affected by impulsive

noise. Thus, we propose DD-LWOS filter with new
information E, which is derived by addition the
impulse noise information to the information E, .The

A

new different information £, is defined by

" 1:
E, = o

where

if [x(n+k)—z(n)| 2 p- o,

otherwise

(16)

an)=x(n)+I(n)-{X,..(m)-x(m)} amn.

Impulse noise information I(n) is given by

I(n) = 1:
n_O:

" where X,.ea(n) is the output of median filter with small
window (e.g.3X3)and ¢ is threshold parameter. The

weights of DD-LWOS filter with the information E‘ ¢
is given by Eq. (19), instead of Eq. (9).

if | X e (M) — x(n)| 2 €
otherwise

(18)

we(m)=[W,-K(m)-D, - E, |+1 (9.

We call this filter DD-LWOS 2 filter. From Eq.(17),

when the point “n” is corrupted by impulsive noise,
p p y 1mp!

2n)=Xpes(n). Thus, the different information E, is
calculated by using X,.4(n). On the other hand, the

point “n” is not corrupted by impulsive noise, different
information is given by x(n). Therefore, the impulsive
noise affection is avoided in the DD-LWOS 2 filter.
DD-LWOS 2 filter gets more better performance than
DD-LOWS filter when input image corrupted by
additive noise which includes impulsive noise

components.

3. EXAMPLES

The performance of DD-LWOS filter and DD-LWQOS
2 filter in image restoration is demonstrated and
compared to the data-dependent WM filter, adaptive
center weighted median filter[7], Median filter and
Wiener filter. A 5 X5 window is used for all filters.
An 8-bits test image “Lena” which contain 256 X256
pixcls, is used in the simulations. First, the original
image corrupted by Gaussian noise (zcro mean and
standard deviation o, =10,20 ). Second, the Gaussian

noise( o, =20 ) corrupted by image further mixed with

bipolar impulsive noise with probabilities 0.04 and
0.08. MESs measure the errors between the filtered
images and the original image and the measured
results are listed in Table 1 and Table 2. And image
results( o, =20, 0, =20+0.04 ) are showed Fig.1 and

Fig.2. It is easy to see that DD-LWOS filters are better
than data-dependent WM filter. In mixed noise case,
DD-LWOS 2 is shown as best results.

Table 1 The measured MSEs for Gaussian noisy test
image(Lena).
filter type o =10 o n=20
Identity 92.4 388.6
DD-LWOS 39.3 94.5
AMW 41.6 104
ACMW 49.3 122.4
Wiener 53.3 119.1
Median 151.6 180

Table 2 The measured MSEs for mixed noisy test
image(Lena).

filter type o n=20+4% o n=20+8%
Identity 1136.7 1797.6
DD-LWOS 123.7 136.5
DD-LWOS 2 111.8 125.7
AMW 125.4 143.6
ACMW 150.1 159.8
Wiener 201.6 254.5
Median 186.2 192.1




(a) Original image

4 o
(¢) Wiener filter

(d) DD-LWOS filter

Fig.1 : Image results ( Gaussian noise )

(c) Median filter (d) DD-LWOS filter

Fig.2 : Image results ( Mixed noise )

CONCLUTIONS
In this paper we proposed the DD-LWOS filter based
on local statistics. Since the proposed filter use both
rank-order and temporal-order information of local

data, it was showed good performances of smoothing
noise not only Gaussian type but also impulse type and
preserving details and edges.
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