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ABSTRACT 

Nonlinear filters which are utilized rank-order 
information and temporal-order information, have 
many proposed, in order to restore nonstationary 
signals which are corrupted by additive noise. LWOS 
(Linear Combination of Weighted Order Statistics) 
filters [I] which also utilized two informations , and 
have properties of efficient impulsive and non- 
impulsive noise attenuation and sufficiently details and 
edges preservation. 

In this paper, we propose a data-dependent LWOS 
filter whose coefficients change based on local 
statistics. 

1. INTRODUCTION 

It is well known that median filters are very useful for 
image restoration. The success of median filters is 
based on two properties: edge preservation and 
efficient impulsive noise attenuation. However, the 
median filter is not a perfect filtering operation. It may 
remove important image details and not sufficiently 
attenuate non-impulsive noise. The main reason is that 
the median filter uses only rank-order information of 
the input data within the filter window, and discards 
its original temporal-order information. In order to 
utilize both rank- and temporal-order information of 
input data, several classes of rank order based filters 
have been developed in recent years, such as L1 
filters[4], Weighted median tilters[2], FIR- 
WOS(weighted order statistics) hybrid filters[3]. 

J. Song and Y. H. Lee have also proposed a filter 
whose structure provide a unified framework for 
representing both linear FIR and median type 
nonlinear filters called linear combination of weighted 
order statistics (LWOS) filters[l]. The LWOS filter is 
combination of L-filters and WOS filters. In this paper, 
we propose adaptive LWOS filters based on local 

statistics called data-dependent LWOS (DD-LWOS) 
filters. The DD-LWOS filter is a combination of the 
data-dependent cy. -trimmed mean filter[5] and the 
data-dependent weighted median filter[6]. They are 
useful in image processing because for typical image 
each part differs sufficiently from other parts. Several 
design examples are presented showing the good 
performance of the proposed filter. 

2. DD-LWOS FILTERS 

2-1 LWOS FILTERS 

The output of LWOS filters is given by 

YCn> = i 'j ' '(j/J) Cn> (1) 

j=l 

where li is a coefficient of L-filters and X,/,(n) is j th 
largest samples of in a row vector X(n) defined by 

we denotes the repeating operation, i.e., 

wrimes 
, A 3 

wox = x,---x 

J is a degree of vector X(n) as 
(3) 

The class of LWOS filters encompasses WOS and L- 
filters. 

Examples: 
Consider a filter windows length 5 LWOS filter with 
weights as 



[w-z, w-1, wo, WI, w21= 1, 3, 1, [I, 11 
[I,, I& 13, 14, 1s. 16, /,I [0.1,0.1,0.1,0.4,0.1,0.1,0,1] = 

and an input vector 

ix-29 x.1, xo, XI, x21 = [2, 3, 7, 6, 81. 

Then X(n) given by 

X(n) = [2, 3, 7, 7, 7, 6, 81. 

The output of LWOS filter calculated by 

Y = C/j . ‘(j/7) = 0.1.2 + 0.1.3 + 0.1’6 + 
j=l 

(0.4 + 0.1 + 0.1). 7 + 0.1.8 = 6.1 

2-2 DD-LWOS FILTERS 

Data-dependent non-linear filters useful in image 
processing because for a typical images are non- 
stationary. Several data-dependent nonlinear filters, 
such as data-dependent WM filters[6],[7], and data- 
dependent L-filters[S], are proposed. In this paper we 
propose a novel data-dependent filter called DD- 
LWOS filter. The DD-LWOS filter is a combination of 
the data-dependent (y. -trimmed mean filter[5] and the 
data-dependent weighted median (WM) filter[6]. The 
output of DD-LWOS filters is defined by 

J(n)-a(n)J_(n) 
c ‘(j/l(n)) cn) 

r(n) = 
j=a(n)l(n)+l 

J(n). (1- 2a(n)) 
(5) 

A 

where '(j/J(n)) (n) isj th largest samples of in a row 
A 

vector X (n) defined by 

i(n) = {w-, (n)Ox(n - IV);. a, 

wo(n>ox(n)9’ - ‘? wN (n>ox(n + N> ) 
(6). 

The number of elements of vector X (n) is given by 

J(n) = 2 wi (n) (7). 
i=-N 

Thus, J(n) is changed at each point “n”. Equation (5) 
shows the definition of data-dependent cr -trimmed 

mean filters. The parameter “ a(n) . J(n)” is defined 

as 

a(n). J(n) = [K(n). (J(n) - 1)/21 (8) 

where the [xl . d is enoted the integer number which is 

rounded x. Equation (6) shows the definition of data- 
dependent WM filter. The weights w, (n) is given by 

wk(n)=rWT.K(n)~Dk .E,l+l (9) 

D, = ,-+ ( 1 
Ek = 

(10) 

(11) 

where e, = Ix(n + k) - x(n)1 and 0, is a standard 

deviation of the additive white noise. d, is the 

distance between x(n) and x(n+k). Wr is an integer. 
K(n) in Eq. (8)(g), is coefficient that is determined 

by the local statistics, and is calculate by 

K(n) = o2 (4 

02(n)+o,’ 
(12) 

where 

i 

m-(n) 
a2(n)= o 

- an2 :ifvar(n) 2cTn2 

: otherwise 
(13). 

Local variance var(n) and local average ave(n) arc 
given by 

{ 

N 

var(n) = C(x(n+i)-me(n))’ /2N+l (14) 
k-N 1 

(15). 

Coefficient K(n) lies between 0 tol when the local 

variance changes. In areas with low signal to ratio (i.e., 
smooth areas corrupted by non-impulsive noise) , since 

K(n) = 0 then wk(n) is close to one and 

“a(n) . J(n)” is close to zero. Thus, DD-LWOS 

filters almost equal to mean filters. On the other hand, 
with high signal to noise ratio, 

:na(nyy;(n) 9, . IS close to (J(n)-1)/2 then, DD-LWOS 

filters equal to WM filters with high center weight 



w,,(n) which can preserve signal details. DD-LWOS 

filters can remove non-impulsive noises while 
preserving signal details. 

2-3 DD-LWOS FILTER WITH 
IMPULSE NOISE INFORMATION 

When the point “n” is corrupted by impulsive noise, 
DD-LWOS filter tend to preserve this impulse noise. 
Because, the information E, is affected by impulsive 

noise. Thus, we propose DD-LWOS filter with new 

information k, which is derived by addition the 

impulse noise information to the information 
A 

new different information E, is defined by 

2, = 
1: ifIx(n+k)-z(n)1 2p.cJa, 

0: otherwise 

where 

-z(n) = x(n) + 0). {X,, (n> - x(n)} 

Impulse noise information I(n) is given by 

1: I(n) = if IXm,&) - x(n)1 2 E 
0: otherwise 

E, .Tk 

(16) 

(17). 

(18) 

where Xmcd(n) is the output of median filter with small 
window (e.g.3 X 3) and E is threshold parameter. The 

weights of DD-LWOS filter with the information kk 

is given by Eq. (19), instead of Eq. (9). 

w,(n)=[M$.K(n).D, .,!?k]+l (19). 

We call this filter DD-LWOS 2 filter. From Eq.(17), 
when the point ‘In” is corrupted by impulsive noise, 

A 
z(n)=X,,,&). Thus, the different information E, is 

calculated by using X,&n). On the other hand, the 
point “n” is not corrupted by impulsive noise, different 
information is given by x(n). Therefore, the impulsive 
noise affection is avoided in the DD-LWOS 2 filter. 
DD-LWOS 2 filter gets more better performance than 
DD-LOWS filter when input image corrupted by 
additive noise which includes impulsive noise 
components. 

3.EXAMPLES 

The performance of DD-LWOS filter and DD-LWOS 
2 filter in image restoration is demonstrated and 
compared to the data-dependent WM filter, adaptive 
center weighted median filter[7], Median filter and 
Wiener filter. A 5 X 5 window is used for all filters. 
An g-bits test image “Lena” which contain 256 X 256 

pixels, is used in the simulations. First, the original 
image corrupted by Gaussian noise (zero mean and 
standard deviation on =10,20 ). Second, the Gaussian 

noise( on =20 ) corrupted by image further mixed with 

bipolar impulsive noise with probabilities 0.04 and 
0.08. MESS measure the errors between the filtered 
images and the original image and the measured 
results are listed in Table I and Table 2. And image 
results( (7, =20,0, =20+0.04 ) are showed Fig. 1 and 

Fig.2. It is easy to see that DD-LWOS filters are better 
than data-dependent WM filter. In mixed noise case, 
DD-LWOS 2 is shown as best results. 

Table I The measured MSEs for Gaussian noisy test 
image&ma). 

1 AMW 1 41.6 1 104 I 
ACMW 49.3 122.4 
Wiener 53.3 119.1 
Median 151.6 180 

Table 2 The measured MSEs for mixed noisy test 
image(Lena). 

Identity 
DD-LWOS 

DD-LWOS 2 
AMW 

ACMW 
Wiener 

1136.7 1797.6 
123.7 136.5 
111.8 125.7 
125.4 143.6 
150.1 159.8 
201.6 254.5 

1 Median 1 186.2 1 192.1 1 



(a) Original image (b) Noisy image 

(c) Wiener filter (d) DD-LWOS filter 

Fig. 1 : Image results ( Gaussian noise ) 

(a) Original image (b) Noisy image 

(c) Median filter (d) DD-LWOS filter 

Fig.2 : Image results ( Mixed noise > 

CONCLUTIONS 

data, it was showed good performances of smoothing 
noise not only Gaussian type but also impulse type and 
preserving details and edges. 
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In this paper we proposed the DD-LWOS filter based 
on local statistics. Since the proposed filter use both 
rank-order and temporal-order information of local 


