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ABSTRACT 

Area/power efficient implementation is provided for 
a new wavelet domain robust image denoising alge 
rithm. A novel approach to system implementation is 

presented which dramatically simplifies hardware im- 
plementation by using a Euclidean-norm approxima- 
tion technique. Simulation results are presented, which 

show that the exact and norm approximation based im- 
pleinentations have comparable performance. 

1. INTRODUCTION 

Noise filtering in the wavelet domain is receiving in- 
creasing attention [l, 2, 31. This trend is partially due 
to the following features: i) the ability to characterize 
signal and noise statistics more efficiently in the wavelet 
domain by dropping restrictive assumptions used in the 
signal domain, ii) the ability to design and apply test 

statistics that more closely fit the data process, and iii) 
as a result, the ability to estimate the signal more accu- 
rately in the wavelet domain rather than in the signal 
space. 

However, most such sophisticated image processing 
systems are limited in practicality due to high com- 
plexity of hardware implementation. Presently, most 
of the existing, wavelet based image denoising, algo- 
rithms are based on signal classification by threshold- 
ing. The fixed threshold value I,,, = 0d2log(N) 
has been established by Donoho, et.al., [4]. In the 
presence of noise outliers, e.g., mixed-noise contami- 
nation, signal thresholding loses its effectiveness [5, 61. 
To counter this, a robust wavelet-domain image de- 

noising algorithm has been proposed in [7], which uses 
several, complex, wavelet domain vector operators. In 
this paper we present area/power efficient implemen- 
tation of the various vector operators employed in [7]. 
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The reader is referred to [7] for detailed descriptions of 
the algorithm. 

The rest of this paper proceeds as follows. Section 
2 presents some preliminary aspects of the problem for- 
mation in the wavelet domain. The proposed algorithm 
is presented in Section 3, which also presents implemen- 
tation issues of the algorithm in [7], whereas Section 4 
presents several application examples . Finally, section 
5 presents conclusions and summary. 

2. PRELIMINARY DEFINITIONS 

Consider the problem of signal denoising, where the 
samples f(ti) of the function f(t), with normalized 
sampling points at ti = (i - 1)/N, must be recovered 
from N noisy samples 

Yi = f(h) + zi, i = 1, . ..) N (1) 

where the noise sequence pi is iid N(0, a2). The denois- 

ing process derives an estimate vector p = (fi) fl, of 

the original vector f = (f(ti))El, such as to minimize 

some risk function R(f - f^). 
A compact matrix form of the wavelet transform is 

studied in [3]. Based on [3] the wavelet decomposition 
vector, g, of signal vector y is given by, 

9 = WY, (2) 

where the matrix W encompasses filtering and decima- 
tion operations. Each sample gi in the wavelet domain 
involves D values, depending on the depth of decom- 

position, i.e., gi = (g”)FZ1. In the separable 2-D DWT 
case, the matrix W involves Kronecker products of fil- 
tering and decimation operators. 

3. VECTOR PROCESSING IN THE 
WAVELET DOMAIN 

Consider the ith pixel, gi, of the wavelet-decomposed 

image at the first level of decomposition. Without loss 



Figure 1: Simplified high level description of the new 

algorithm. 

of generality, we assume that the three first bands rep- 

resent the high-detail bands, whereas the fourth band 
represents the low-detail band. The high-detail vector 

is given by, zi = (gf):=i. A simplified high level pic- 
torial description of the algorithm presented in [7l is 
shown in Fig. 1. Implementation of operators used in 
[7] will be given next. 

3.1. Vector Operators and their Implementa- 
tion 

An Euclidean norm-approximation algorithm was pre- 
sented by Barni, etal., in [8]. We employ this algorithm 
to simplify implementation of the vector operators in 

PI. 

3.1.1. Euclidean Norm Approximation 

In [8] the Euclidean norm of a vector is approximated 
by means of a linear combination of its components, 

Where x(i) is the ith ranked component of x obtained 

by sorting the components in decreasing order of their 

absolute values. In [8], use of, ai = & - ,/(i - l), is 
advocated for the norm-approximation in (3). Since 
multiplication by a constant can be implemented using 
only additions, the approximate implementation has 
advantages of, a lesser latency, greatly reduced area and 
substantial reduction in power dissipation. Fig. 2 shows 
an example of hardware implementation of the above 
approximate algorithm, where the coefficients, ai, have 
a word size = 5 and the vectors are 3-dimensional. 

Low area/power implementation of II llL2 
&I I x1 I 

For Approximate technique 
Latency = 3 adders, 3 cs & 1 abs value. 
Area = 5 Adders + 3CS + 3 Abs val. 

I Latency = 1 square-root+ 
1 Square + 2 Additions. 
Area = 1 Square-rooter + 
3 Squaren + 2 Adders. 

Figure 2: Example of approximate norm computation, 
CS is compare and swap. 

3.1.2. Implementation of VDO 

Due to the orthogonality of the wavelet transform, edges 
with strong orientation in the image plane result in sig- 
nal concentration in one of the wavelet bands. The 
VDO operator defines a measure of the proximity of 
the vector xi to one of its coordinate axes. Its defini- 
tion is based on the angular distance from xi to each 
of its axes 211 . The set of squared angular distances at 
each pixel: 

1 = 1,2,3 (4) 

performs like a probability distribution function (Cf=, 41 (xi) = 
1). Thus, its entropy, e(i), provides a measure of dis- 
persion on xi and can be used for the definition of the 
VDO operator. The VDO operator is defined as: 

VDO(i;k) = e(i) if &(xi) = max(&(xi)) 

VDO(i;k) = 0 oth,erwise. (5) 

The exact computation of Vector Directional Ori- 
entation (VDO) will require computation of an en- 

tropy. Instead, a much simpler implementation can 
be obtained by establishing a bijection between the en- 
tropy operator and a, computationally simpler, func- 
tional and requiring the bijection to preserve ordering, 
<,=, >, relationships, almost everywhere, see Fig. 3. 
This is, especially, true as we put a threshold on the 
entropy operator [7]. We define an alternative (to en- 
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0.0100 0.9800 0.8981 1.2892 
0.0990 0.9000 0.6990 1.1860 
0.1900 0.8000 0.5084 1.0337 
0.1000 0.8000 0.4183 0.9304 
0.2000 0.7000 0.2702 0.7884 
0.2900 0.7000 0.4041 0.8917 
0.2000 0.6000 0.1350 0.5316 
0.3000 0.6000 0.1827 0.6464 
0.3900 0.6000 0.3448 0.7651 
0.3000 O.SooO 0.0628 0.3897 
0.4ooo 0.5mO 0.1413 0.5226 
0.4900 O.SooO 0.3245 0.6503 
0.3coO 0.4m 0.0088 0.1329 
0.4000 0.4000 0.0398 0.2658 

we similar in this exampl. 

Figure 3: A bijection between entropy and an alternate 

dispersion measure. 

tropy) dispersion measure: 

where ,,/dl(zi) represent the direction cosines of the 
vector xi. The expression for e(i) can be easily com- 
puted by the a.pproximation in (3). 

3.1.3. Implementation of VDC 

Due to the signal dependent nature of the wavelet coef- 

ficients, we expect to find strong correlation among the 
vector orientations at the regions of edges. We define 
the VDC operator as: 

VDC(i) = -& 
c m,n, m#n, m,ne7ig() I4iII~~l 

c, lxm I2 

Figure 4: Memory requirements for VDC computation 

by looking at lifetime of each DWT output 

conservative value 0.4-0.5, to avoid even small influ- 
ence from noise. 

The exact computation of Vector Directional Corre- 
lation (VDC) requires computing eqn(6). With a 5 x 5 
window this entails a worst case situation which re- 

quires an enormous number of multiplications (> 600) 
and additions (> 500) for computing the numerator 
and the denominator. Additionally, we also require a 
division to complete the computation. Storage require- 
ments for VDC implementation can be gauged from 
Fig. 4. 

-4lternatively we can express VDC as, 

m,n E N(i) if IIN{i}llsig = d = > 3 , 

= 0, otherwise. 
@) vDc(i) = 2% 

II c 772, mG?ig() d12 
2 * cm, mEsig() I( - f 

Where sig() denotes the set of significant edge pixels. 
IIIV{i}llSig denotes the number of significant edge pix- 
els in the neighborhood of pixel i. The requirement of 
at least 3 significant edge pixels in the neighborhood of 
pixel i serves to prevent pixels contaminated with im- 
pulses from having a high VDC. A large VDC(i) value 
indicates strong concentration of similar vectors in the 
neighborhood of i. As with all other operators, the 
threshold for activating the VDC operator is very im- 
portant. Small threshold values will cause noise to be 
falsely identified as edge, whereas large values may miss 
thin edges. In most experiments we used the rather 

m E N(i) if llN{i}lls~g = d = i 3 , 

= 0, otherwise. 

By computing the numerator and denominator recur- 

sively using running-suna formulation; we can compute 
VDC very easily by using the norm-approximation in 
(3). In this way, for a system processed using a 5 x 5 
window, hardware requirements come down to a worst 
case possibility of, 6 norm ,6 squa.ring, 13 additions and 
one division operations along with a scaling by A. 



3.1.4. Implementation of SED 

The conventional Scalar Edge Detector (SED) employed 
in [7], is given by, 

c( 
c 2 

num(i) = x972 - 
nEN{i) xn 

rnEN(i) 1 IIW~II ’ 

SED(i) = 
num(i) 

mm(i) + NO ’ 

where No is the variance of the, inherent, additive white 

Gaussian noise. If we consider, again, data-processing 
using a 5 x 5 window, we would require 25 squaring 
operations, about 50 additions, a mean computing filter 
and a division. Alternatively, first, express the SED 
in the following manner: 

The latency 

in norm computation 

can be reduced by 

performing a distributed 

sorting of the input data 
over several clock periods. 

The 5 crossed pixels 
can be considered to 

form a 5-D vector 
We can compute 

the norm of this vector 

and square it to approximate 

the sum of squares. 

21 - MlW~ll - 1) 
‘Figure 5: SED simplification using approximate norm 

num(i) = c computation 

rnEN{i) 

SED(i) = 
mm(i) 

num(i) + NO. 

Second, the above expression can be computed using 
simple recursive formulations for computing the running- 

sum of squares. As can be easily verified, for a 5 x 5 
window, the resulting recursive formulation would re- 
quire just 6 squaring operations, 5 additions, a mean 
computing filter and a division. We can further reduce 
the number of squaring to just two by grouping the 
DWT output to be squared ,column-wise, in groups of 

5, and regarding the computation of the sum of squares 
as computation of the square of the Euclidean-norm of 
a 5-dimensional vector see Fig. 5. 

4. SIMULATION RESULTS 

Results are shown for Cameraman, Lena and Airplane 
images which show that there is no loss in performance 
due to approximate implementation of the vector oper- 
ators. The wavelet transform chosen was the Daubechies 
8-tap wavelet 191. We defined SNR in the conven- 
tional way as the ratio of signal power to noise power. 
The SNR in Gaussian noise case, for Cameraman = 

13.86dB, Airplane = 9.9dB, Lena = 11.33dB, mixed 
noise consists of 4% impulse noise in addition to the 
Gaussian noise. 

5. CONCLUSION 

This paper has presented a low area/power implemen- 
tation of a novel robust algorithm for denoising of im- 
ages using wavelet domain processing. The algorithm 

Image Gauss. Mixed Gauss. Mixed 
& & & & 

Exact. Exact. -4pprox. Approx. 
Cameraman 3.94dB 3.54dB 3.89dB 3.73dB 

Airplane 6.46dB 5.63dB 6.44dB 5.59dB 
Lena 5.89dB 5.30dB 5.91dB 5.26dB 

Table 1: Comparison of, SNR gain, in exact and ap- 
proximate implementation of vector operators. 

a) b) 

d) e) 

Figure 6: Gaussian noise a)Noisy image. Image 
restoration using: b)Exact scheme. c)Approx scheme. 
Mixed-noise d) :e) ,f) same order as before. 



is effective both in presence of Gaussian and mixed 
noise environments. Approximate versions of the op- 
erators used in the algorithm were developed. The use 
of approximate processing reduced the computational 
complexity considerably but did not degrade the per- 
formance. 
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