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ABSTRACT 

Here we analyse some specific properties of several well 

known nonlinear filters applied to processing of ramp 
edges or rapidly increasing/decreasing linear parts of 
signals corrupted by Gaussian or mixed noise. It is 

shown that depending upon the slope, noise variance, 
filter type and scanning window size the efficiency of 

noise suppression and spike removal varies in rather 
wide range and can differ greatly from that one pre- 
dicted on basis of standard approach to its analysis car- 
ried out for constant signals. Quantit,ative evaluations 
based on numerical simulation and partly confirmed by 

analytical derivations are presented. 

1. INTRODUCTION 

Traditionally nonlinear filters are well known to be ef- 
ficient in removing impulses and preserving step edges 
[3,4]. In particular, one of the most known nonlinear fil- 

ters, the standard median one, is able to reject almost 
half of spiky values in a sample formed by elements 
belonging to the current position of a scanning win- 

dow and it preserves any noncorrupted step edge. But 
the efficiency of Gaussian noise suppression for stan- 
dard median filter is essentially worse than for usual 

mean filter having the same window size. Just this 

obstacle was the reason for the design of other nonlin- 
ear signal processing algorithms combining the advan- 
tages of standard median and mean filters. Among 
the most popular it is possible to mention Hodges- 
Lehmann, Wilcoxon, o-trimmed and median hybrid fil- 
ters [2,4]. 

The results of quantitative estimations of their char- 
acteristics - Gaussian noise suppression efficiency and 
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impulsive noise removal ability - are rather widely pre- 
sented in fundamental books [1,4], but these compar- 

isons are mainly done for constant signals or homoge- 
neous regions of images. One can expect that ramps 
(i.e., rapidly increasing/decreasing linear parts of sig- 
nals) should not. cause any problems for nonlinear filters 
and that their behaviour in ramps would be similar to 

their behaviour in constant signal regions. Interestingly 
this is not true. These kinds of signals, however, are 

rather typical for tracking and control systems, for ex- 
ample, in radar applications where the trajectory of the 
tracked object might be continuously ascending or de- 

scending [5]. Such a trajectory would cause the signal 
under processing to be at least almost linearly increas- 
ing or decreasing. 

A ramp corrupted with noise changes the perfor- 
mance of the median and other nonlinear filters. In 

this paper we present the results of empirical studies 
made with different filters and corrupted ramps. We 
shall also discuss t.he reasons for the behaviour of the 
filters with these corrupted ramps. The discussed fil- 
ters include mainly nonlinear filters such as median, 

Wilcoxon, Hodges-Lehmann, o-trimmed and median 
hybrid ones. The mean filter is used for comparison. 

Section 2 deals with analysis of Gaussian noise sup- 
pression efficiency of considered 1-D signal processing 
algorithms and some empirical and analytical results 
are presented. Then, the case of spike presence in 

the scanning window is discussed in Section 3 and it 
is shown that it results in specific undesirable effects 
in the output signa.1. Some peculiarities are illustrated 
and confirmed by examples. Finally, the conclusions 
follow. 



2. ANALYSIS OF GAUSSIAN NOISE 
SUPPRESSION EFFICIENCY FOR RAMPS 

Obviously, the properties of filtering algorithms depend 
upon several factors: the filter type and its scanning 
window size, the properties of signals and statistical 

characteristics of noise. The numerical simulation re- 
sults and reasonable preliminary assumptions permit- 
ted to predict that the characteristics of output signals 

do not depend directly upon the values of ascending 
signals first derivative and root mean square (rms) of 
additive Gaussian noise but on their ratio. So while 
performing simulations we have not changed the rms of 
additive Gaussian noise but varied the first derivative 
of the ascending signal, which can also be expressed as 

the slope (the angle) of the ramp. The tangent of the 
angle is the vertical distance of adjacent samples. The 
original noncorrupted ramps all had nonnegative first 
derivates. The angle of the ramp was alternated from 0 

to 89 degrees. The ramp was first corrupted with addi- 
tive noise and then filtered. The filtering was repeated 
sufficient number of times and then the variance and 

mean of these results were estimated and analysed. 
The simulations were done for several scanning win- 

dow sizes typical for many practical applications. The 

window size was alternated from 5 to 11. Table 1 shows 
the output variance of the filtered signals for some of 
these simulations. Vote that one sample for n = 5,7 
and two samples for n = 9,11 were trimmed from both 
ends of the ordered data in the o-trimmed filter. 

We found out that although with small angles the 

differences between the different filters are not that sig- 
nificant,, but when the angle is increased the perfor- 
mance of all nonlinear filters gets worse but in different 
degree. 

In the case of the median filter the output vari- 

ance can be analytically computed using the following 
Proposition [6]. 

Proposition 1 Let the input values xb: in the window 

B of a stack filter Sj (.) defined by a positive Boolean 

function f (.) be independent random variables having 

the distribution functions @b(t), respectively. Then the 

output distribution function Q(t) of the stackfilterSf(.) 

is 

q(t) = c n(l - @b(t))=b * @‘b(t)- 
axf-‘(0) bEB 

where f-'(O) is the pre-image of 0, i.e., f-'(O) = 

{zIf(x) = 01. 

From the output distribution function we have com- 
puted the probability density function. Knowing the 
density function we calculated the output mean and 

variance. The results obtained analytically confirmed 
the accuracy of our numerical simulations. 

Angle Window size 
80' 5 I7 I 9 1 11 R 

H Filter I I I I II 

Table 1: The effects of the angle of slope to the filtering 

efficiency. The variance of the noise is 10.0. 

Utilizing Proposition 1 we can obtain the output 
distribution function for a median of length five which 

is 

where i, j, k, I E { 1,2,3,4,5} and Qi, 1 5 i 5 5, are the 
cumulative distribution functions of the five samples in 
the filter window. If the noise is Gaussian distributed 
with variance u2, and the angle of slope is 0 then these 
distribution functions will be 



for 1 5 i 5 5. The output probability density function 
is by definition S*(Z). 

where j, k, 1, m E {1,2,3,4,5}\(i) and q&(x), 1 5 i 5 5, 

are the probability density functions of the distribution 
functions Qi (x) , respectively. For Gaussian distributed 
noise these density functions are 

d%(z) = &e 

-1,2(L-(‘-~)tO”B)~ 
7 

for 1 5 i 5 5. 
Let us compute the limit of the output density func- 

tion as the angle of the slope is increased towards 90’. 

As the angle of the slope approaches 90” the value of 
tan0 increases without bounds. First we define two 

expressions. If the expectation value of two distribu- 

tions are ~1 and ~2, ~1 2 ,uL:! and if the distribution 
functions of these distributions are @l(t) and @z(x), 
respectively, then @l(x) is said to lie right of @2(x) 
and @2(z) is said to lie left of @l(x). Similarly density 
functions are said to lie right/left of each other. The 
distance between two distributions is (~1 - ~21. i.e the 
absolute difference between their expectation values. 
The following Lemmas are proven for the calculation 
of the output density function. 

Lemma 1 Consider Gaussian distributed data. If we 

have a product where one density function 4(x) is mul- 

tiplied by one or more distribution functions and at 

leqst one of the distribution functions lies right of the 

density function then the limit of the product as the 

distance d between the density function and the distri- 

bution function lying right of it tends to infinity is 0. 

Proof. Without loss of generality we may assume that 
d(x) has zero mean. We have to show that 

pix dJ(X)%(~)@2(X) . . .%I(+) = 0, 

where the density function is d(x) = &e-‘12(s)Z 

and at least one of the distribution functions is of the 
form 

J 

I 
@i(X) = 

JkJe 
-l/2(+)‘&. 

Consider the case of x < d/2. For an arbitrary E > 0 
let K = 2 > 0 and let d > K. Now since x < d/2 and 
K > 0 we have 

The distribution functions @i(X), 1 5 i 5 5, and the 
density function 4(x) are all 2 0, the distribution func- 
tions are 5 1 and the density function is 5 -&. Also 

since 

Now we can estimate the upper bound of the product. 

Iti(~)@l(X)@2(~). ‘.%l(X)l 

5 && s:, e~t--d:v20~ dtl 

5 &I Is_“, 2u2/(t - d)2 dt 
I 

= & \/:21/t dt 1 = $( 2 - 0) 
= *i<$y 

= 5 < 6. 

Now we have shown that for any x < d/2, 

V& > 0 311’ 2 0 : 
d 2 K 3 I~(x)@I(x)@~(x) . . .%(x)1 < 6. 

Since d tends to infinity we can always find such Zr’ 
that we get x < d/2, thus we have shown that for any 

x, lim,, fj(x)@1(2)@2(2) ...an(x) = 0. 

Lemma 2 Consider Gaussian distributed data. If we 

have a product where one density function is multiplied 

by one or more distribution functions and all of the dis- 

tribution functzons lie left of the density function then 

the limit of the product as the pairwise distances d + ci 

between the density function and the distribution func- 

tions tend to infinity is the density function. 

Proof. We have to show that, 

where the density function is 4(x) = &e-‘/2(s)Z 

and the distributions functions are 

@i(X) = 
J 

r+d+ci 1 
-e-1/2(~)a dt, ci > 0, 

-ccl 66 

for all 1 5 i 5 n. Now when d + 0;) also x + d + 
x+d+c, 1 

c; + co and thus limd,, J-, 7z7 
e-1/2($ & = 

lh+, O(x) = 1, since a(x) is a dist,ribut,ion function. 

Now we have 

the density function of the distribution. 



Now we can compute the output density function of 
the median with filtering window of length five as the 
distance between the samples tends to infinity. Note 
that &Q(x) consists only of products where at least 
one of the distribution functions lies right of the den- 

sity function or all of the distribution functions lie left 
of the density function. By utilizing the fact that the 

limit of a sum is the sum of limits, i.e., lim,,,[f(x) + 
g(x)] = limr+ f(x) + limr+ g(x), we can compute 

lima* km & Q(x) as a sum of the limits of the prod- 

ucts in 4(x). Now using Lemmas 1 and 2 and we 

get 

= ,aJi:m 6&4;(x) C ~j(x)~k(x)@~(x)iPm(x) 

1 i=l j<k<l<m 

-3edi(x) C +j(x)@k(x)@l(X) 

i=l j<k<l 

+k h(x) c @j(x)@k(x) , 

= 

i=l j<k 

645(x) - 3(445(x) + 44(x)) 

+6$5(x) + 344(x) + 43(x) 

= 43(x), 

which is the density function of the middle sample. The 
expectation value of this distribution is 0 and the vari- 
ance is u2. Thus the median does not change the vari- 
ance of the noise at all. This tendency can also be seen 
in our numerical simulations. 

The degradation in the performance of the median 

filter as the angle of the ramp is increased can be ex- 
plained by the fact that with angle increasing and/or 

noise variance reduction the sequence of samples tends 
to a root signal not altered during processing. Some 

degration of noise suppression efficiency occurs also for 
Wilcoxon, Hodges-Lehmann and a-trimmed filters as 
well but it is not too great. For the majority of prac- 
tically important situation it does not exceed about 20 

% for Wilcoxon and Hodges-Lehmann filters and 40 % 
for a-trimmed filter. As for hybrid median filter it has 
similar properties as median and even worse. 

Usually it is supposed that the increase of the filter 
scanning window size improves the noise suppression 
efficiency. For the considered situation it really takes 
place for Wilcoxon, Hodges-Lehmann and a-trimmed 
filters. It is also valid for standard median and FIR 
median hybrid filters when the angle is not that large. 
Specific effects occur for these filters if the angles are 
increased. For median filter the results almost do not 
differ because for any scanning window aperture sizes 
since the input signals tend to be root ones. For the 

FIR median hybrid filter the situation is even more 
striking. With scanning window size increasing the ef- 
ficiency of noise suppression becomes worse. The spe- 
cial characterist,ics of this filter are due to the structure 
of the filter algorithm. The FIR median hybrid filt,er 

chooses by definition as it’s output the median from the 

set (l/k) Cf=, XirXk+lr (l/i) ~~=k+, xi), where n 
. , 

is the size of the window. Now if the angle is high 

enough the averages of the samples Xi, i = 1, . . . , /c, 
will most of time be smaller than the sample Xk+l 
and this sample will be smaller than the average of 
Xj,i=k+2,..., n. When the FIR median hybrid filter 

computes the median from thcsc the result is generally 
the sample Xk+l, i.e., the filter does not change the 
signal at all. 

3. ANALYSIS OF FILTER OUTPUT 
PECULIARITIES IN THE PRESENCE OF 

SPIKE 

Now let us also demonstrate bhat the presence of a 

spike for ramps also results in specific effects. It is 
very easy to do for standard median filter with the 
scanning window size equal to 5. Let the initial (input) 
sequence be the following: 1,2,3,4,15,6,7,8,9,10, i.e., 
it is corrupted by a single spike. Then, the output of 
standard median filter starting from the third sample is 
the following: 3,4,6,7,8,8. So it is seen that because 
of the spike, the fifth, sixth and seventh samples of 

the output sequence differ form the input ones. This 
specific effect can be interpreted as a dynamic error or 
specific jitter. If the scanning window size increases the 

width of such zone of bias also becomes greater. 

,* 
Y 

,.- /’ 

Figure 1: Nonlinear filtering of corrupted ramp signal, 
n = 5. 

It is possible to show that similar effects occur for 
other types of considered nonlinear filters and the bi- 



ased output areas for them are even wider than for 
standard median filter. The reason is that their robust 

properties are worse in comparison to the standard me- 
dian filter. The place of bias output area depends upon 
the sign of derivative and the sign of spike. For in- 
creasing signal if the spike is negative the bias is also 
negative and it occurs for samples with index less than 
that one corrupted by spike. 
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Figure 2: Nonlinear filtering of corrupted ramp signal, 
n = 9. 

Figure 1 shows a part of initial ramp corrupted by 

Gaussian noise and one positive spike and the outputs 
of considered filters for the scanning window size equal 
to 5. It is seen that a specific bias is observed for some 

neighborhood of spiky sample, especially for median 
hybrid filter output signal. Similarly in Figure 2 the 
ramp is corrupted with Gaussian noise, but this time 
there is a negative spike and the length of the filter 

scanning window is 9. 

In Figures 1 and 2 from left to right and top 
to bottom in the six figures the solid lines are the 

original corrupted signal and the outputs of median, 
Wilcoxon, Hodges-Lehmann, o-trimmed, and median 
hybrid filters, respectively. The dotted line represents 

the original noncorrupted ramp. It clarifies how ef- 
fectively each filter has performed. It can be clearly 
seen that Wilcoxon, Hodges-Lehmann and a-trimmed 
filters perform quite well in the sense of Gaussian noise 
suppression although some bias is observed near the 
spike. On the other hand, the standard median and 
median hybrid filters are not able to effectively reduce 
the Gaussian noise from the signal. Comparison of Fig- 
ures 1 and 2 illustrates the effect of the sign of the 
spike and the scanning window size to the behaviour 
of the bias. For a negative spike the bias is located 
before the spike and for a positive spike after the spike. 
Also it can be seen that the biased zone increases as 

the length of filter scanning window is increased from 
5 to 9. 

The mentioned bias is not desirable. Thus, more 
effective procedures are needed while processing ramps 
with impulsive noise. A reasonable solution is to apply 
adaptive schemrs able to det,ect spikes and t,o reject, 
them from consideration. The use of nonsymmetrical 
trimming or selection of other order statistic instead 
of median also seems to give improvements over the 
studied “standard” filters. 

4. CONCLUSIONS 

Nonlinear filters are characterized by specific behav- 
ior of output signals for ramps corrupted by additive 
and impulsive noise, they partly or totally lose their 
advantages and efficiency of noise suppression. These 
effects are quantitatively evaluated and demonstrated 
and they should be taken into account while designing 
and selecting filters for processing such signals. 
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