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ABSTRACT 

Nonlinear image processing algorithms are important 
tools for solving sophisticated problems in the domain 
of image analysis. In particular, they are a useful and 
powerful alternative to linear filtering if objects have 
to be detected in real time on the basis of geometrical 
properties. In the following part , a nonlinear image 
processing system designed for the automatic inspec- 
tion of rail surfaces by means of on-line analysis of video 
sequences is presented. The inspection of the fixing de 
vices and other components of the track are not consid- 
ered here. In our application, nonlinear operations are 
used for image enhancement, normalization, detection 
of damaged areas on the rail head and filtering of time 
series. This paper addresses practical aspects and ad- 
vantages of equalizing image histograms, morphological 
filtering, binarization of images, and median filtering. 

1. INTRODUCTION 

In future, railroad lines will have to be checked auto- 
matically for defects on the rail surface. An attractive 
solution for the task is given by a video sensor unit 
and an on-line analysis system that are mounted on an 
inspection vehicle (cf. Fig. 1). The first consists of a 
light source and a high speed line camera and is de- 
signed for speeds of up to 100 km/h of the inspection 
vehicle [9]. The subsequent analysis system incorpo 
rates image processing chips and boards and a host 
computer. It is able to localize the rail head in the 
video images and to detect surface defects on it in real 
time. Finally, the analysis results are displayed on a 
monitor (cf. Figs. 1 and 2). 
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Fig. 1: Video sensor [9] 

Fig. 2 shows an example of one video image where 
the analysis results are displayed by white vertical lines 
for foot and rail head and by a black circle for a surface 
defect. Vertical stripes on the rail head that are due 
to unavoidable specular reflections make the analysis 
more difficult. 

Surface defects can also appear in dark zones of the 
rail head . 



Fig. 2: Detected fault 

Since the raw data, which have to be processed, are 
a set of images it is reasonable to adopt basic principles 
of human vision (cf. [5] and [6]) for the general analy- 
sis strategy. This has to be done in an efficient and 
simplified form in order to assure reliability and mod- 
erate computational complexity. Following this gen- 
eral guideline, feature extraction is performed at dif- 
ferent resolution levels. Edge information is taken into 
account and local neighborhood-dependent features of 
objects are calculated. The relations between local and 
global image perception and the geometrical forms of 
objects are taken into account. Most of these tasks are 
performed by nonlinear operations. As far as possible, 
algorithms are designed for massively parallel comput- 
ing. 

2. RAIL HEAD LOCALIZATION 

Due to vibrations of the train and thus fluctuating cam- 
era, angles, positions of foot and head of t.he rail in the 
video images (cf. Fig. 2) vary which means that they 
have to be redetermined from frame to frame. A reli- 
able localization of the rail head and its surface defects 
can only be realized by the analysis of features derived 
on the basis of a two-dimensional signal. Hence, the in- 
dividual image lines generated by the camera are sum- 
marized to form frames of 256 x 256 pixels in size (cf. 
Fig. 2). On the basis of Gaussian and Laplacian image 
pyramids (cf. [l], [4], [8], and [ll]) suitable features for 
head detection are derived in different resolution levels. 
The latter are computed by low pass filtering and sam- 
pling rate reduction. The features have been chosen in 
such a way that a two step procedure for the localiza- 
tion of the region of interest (ROI) is possible, which 
saves computation time. Surface chsract,eristics as well 

as edges of the rail have been taken into account. On 
the basis of the local edge density (cf. [I]) a raw rail 
localization is determined within a low resolution im- 
age level. This behavior is very robust with respect to 
illumination conditions and independent of the rails’ 
gray value. In a second step, a high resolution level 
is used for the exact localization of the rail. Images 
are normalized by equalizing histograms (cf. [12]) so 
that textures and edges are improved. This operation 
leads to a normalization of the variance of the whole 
image and to a more homogeneous distribution of lo 
cal signal variances. Large homogeneous regions of the 
image correspond to high histogram values and lead to 
a large magnificat,ion of the gray levels in this domain. 
However, equalizing the histogram also amplifies noise 
which makes an additional low-pass filtering necessary 
before edge detection can be performed. 

Edge detection is performed by the application of 
the Msrr-Hildreth operator (cf. [5]) which includes 
LOG-filtering and searching for zero crossings of the 
output signal. The LOG-filter represents a twodimen- 
sional band pass and is of major importance in the 
processing of visual information by animals. For exam- 
ple, the receptive field of bipolar cells in the retina op- 
erates approximately like a LOG-filter (cf. [6]). Math- 
ematically, a LOG-filter is equivalent to a Gaussian 
low-pass filter cascaded with the Laplace operator. In 
the first step, noise and very small structures are sup- 
pressed by the low-pass filter, and in the second, in- 
tensity variations (edges) are detected by means of the 
Laplace operator (cf. [5]). The latter is the isotropic 
derivative operator of the smallest order. Hence, its use 
for edge detection is very efficient (cf. [5]) compared 
to direction dependent gradient operators. Further- 
more, the advantages of the LOG-filter, e.g. compared 
to the Sobel operat.or, have been confirmed by many 
computer simulations. The incorporated low-pass fil- 
ter makes the Marr-Hildreth operator resistant with 
respect to anomalities in real data. In contrast to this, 
the use of the Sobel operator for edge detect.ion implies 
the search for local maxima of the filter output signal 
which is relatively time consuming. In view of this fact, 
the Marr-Hildreth operator has been preferred which 
ensures that the signal is locally smoothed (low-pass 
filtering) and edges are marked at zero crossings of the 
filter output signal. 

The localization of zero crossings leads to a binary 
edge image (cf. Fig. 3c) and represents a nonlinear 
operation. It extracts two-dimensional local geomet,ric 
information like edge contours. Informabion concerning 
steepness of edges is hereby eliminated which is impor- 
tant for global image perception. 
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Fig.3: a) Original image, 

b) Frequency response of the filter, 
c) Binary edge contour, 
d) Smoothed edge projection. 

Raw rail localization is based on a high resolution 
level. At this level, vertical disturbing stripes have to 
be suppressed by combining LOG-filtering with angular 
filtering. In Fig. 3b, the magnitude of the frequency re- 
sponse of this combined filter is depicted. For example, 
filtering of image a) in Fig. 3 in combination with the 
detection of zero crossings leads to the binary edge con- 
tour c). Subsequent low-pass filtering reveals the local 
edge density. Finally, the rail position can be localized 
by using the maxima of the vertically projected edge 
image. The low-pass filtering and projection operations 
can be interchanged. The low-pass filtered version of 
the vertically projected edge image is shown in Fig. 3 
d) and its analysis permits the raw rail localization (de- 
finition of ROI) with respect to its horizontal position. 

The exact positions of the edges of foot and head of 
the rail in the video images are determined in the do- 
main of the already determined ROI. This is done on 
the basis of a high resolution level where four parallel 
lines (edges) are searched. For this purpose, vertical 
stripes caused by unavoidable specular reflections on 
the head have to be ignored which is done by taking 
into account only the first two lines on the left and 
right-hand side, respectively. More precisely, in the 
first step the histogram of the image is equalized and 
the result is filtered by a LOG-operator. The detection 
of the zero crossings is done in such a way that vertical 
edges are preferred. In general, line detection on the 
basis of an edge image can be implemented by means of 
local and global projections, respectively. Small angu- 

lar deviations of the rail from an exact vertical position 
can be neglected in this application which implies the 
simple use of column sums (vertical projections) for 
line detection. However, the edges of foot and head ex- 
hibit many breaks due to strong dist,ortions. Further- 
more, additional vertical edges appear in the images 
which are not caused by foot or head but for example 
by the fixing devices. In these cases, projections arc 
not sufficient for a robust localization of foot and head 
of the rail. This problem is solved by using morpholog- 
ical line analysis (filtering) methods. The principles of 
these nonlinear processing schemes will be illustrated 
by discussing Fig. 4. Its first row shows the original 
edge image (Fig. 4a) and the results of morphological 
operations applied to it (Fig. 4b and c). The lower row 
shows the calculated vertical projection. First, the op- 
eration “closing” together with the structural element 
“short vertical line” (cf. Fig. 4b) is applied for closing 
short gaps in the edges of foot and rail head . Sub- 
sequently, the operation “opening” together with the 
structural element “long vertical line” is used for the 
elimination of short edges which cannot be caused by 
the rail edges (cf. Fig. 4~). 
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Fig. 4: Nonlinear processing of edge image. 

Mathematically, the operations opening (0) and clos- 
ing (C), respectively, can be formulated as [7] 

O(b) = (b 0 SEL) (I> SEL, 

C(b) = (b ~3 SEL) o SEL, 

where b is the binary image, SEL the structural ele- 
ment “vertical line”, @ stands for dilation, and @ for 
erosion. 

3. TEMPORAL ON-LINE FILTERING 

Individual errors of the algorithm described in the last 
section for the exact horizontal rail localization in the 



image can be bridged by means of int.erframe filtering. 
The series of computed horizontal coordinates of the 
rail (one in each frame) can be considered as a discrete- 
time signal. The suppression of local errors would be 
possible by means of low-pass filtering. However, good 
filters with narrow transition bands have large group 
delays which leads to memory problems in an on-line 
system (many images have to be stored). For example, 
a causal linear phase FIR low-pass filter of the order 
N has a group delay of N/2 samples: i.e.: if we process 
image number i, then we obtain the filtered version 
of the rail position for image number i-N/2. Hence, 
the subsequent defect detection requires the storage of 
the last N/2 images. Similar considerations apply to 
non-causal FIR low-pass filters. IIR filters with a nar- 
row transition band can be designed with low order, 
however, they cannot have a linear phase. A better 
alternative is offered by the use of nonlinear median 
filters. For example, a median filter of the order five 
requires the sborage of only three images and it is able 
to eliminate up to two errors in a sequence of five im- 
ages. Experiments with real data showed that such a 
median filter of the order five is indeed sufficient for 
the application considered. 

4. RAIL INSPECTION 

The rail head represents the region of interest for the 
localization of damage (cf. Fig. 5a). Latter can be 
identified due to the geometric forms and the difference 
from the surrounding with respect to gray level values. 

a b d 
Fig. 5: Suppression of vertical stripes 

The unavoidable specular reflections from the rail 
head lead to disturbing vertical stripes in the images 
(cf. Fig. 5a). They have bo be eliminated by means 
of angular filtering. For this purpose, the already lo- 
calized ROI (rail head) is divided into horizontal equi- 

spaced stripes (blocks). The number of blocks depends 
on the expected maximum diameter of faults. After- 
wards, angular filtering can be performed for all blocks 
in parallel. Here, filtering is carried out in the fre- 
quency domain on the basis of an FFT, which is ap- 
proximately the same as subtracting its respective mean 
value from each column of a block. As a consequence, 
the filter output signal has positive and negative values 
which means that its magnitude has to be determined 
before a level detection operation can be performed. 
Afterwards, the background appears nearly homoge- 
neous and its signal values cause a peak near to zero 
in t,he histogram. In contrast to this, t,he signal values 
stemming from damaged areas influence the histogram 
at higher values which are separat,ed from the back- 
ground peak. Hence, a suitable t,hreshold for binariza- 
t.ion can be easily defined. The geometrical properties 
of defects are enhanced in the binary image. Isolated 
white pixels can be interpreted as noise and are re- 
moved by means of a simple morphological operation. 
The remaining white domains are sorted with respect 
to its diameters since small patches on the surface arc 
not considered as relevant faults (cf. Figs. 5~: 5d, and 
6). Morphological sieve filtering [lo] is used for the de- 
tection of objects which cannot be encircled by a circle 
of prescribed diameter. Mathematically, the filter itself 
can be described as follows [lo]: 

SF(b) = (b $ XSEc) 0 ASED, 

where b is the binary image, a: stands for dilation, 8 for 
erosion, X represents a scaling factor, SEC the struc- 
tural element “circle”, and SED the structural element 
“disk”. The sieve filter performs a binary decision with 
respect to the diameter of objects, since it will be ac- 
cepted or eliminated as a whole. The results of this 
nonlinear operation is illustrated in Fig. 6. Depen- 
dent on their size and the diameter D (in pixels) of the 
structural element, patches are accepted or eliminated. 

5. SPECIAL PURPOSE HARDWARE 

The image analysis introduced above is based on two- 
dimensional filtering, FFT, morphological operations 
like dilation and erosion, equalization of histograms, 
and binarization. The parallel execution of operations 
is unavoidable in order to realize real time processing. 
However, special purpose chips and hardware modules 
are commercially available which execute the above 
tasks with specially designed architectures. In the pre- 
sent application, such modules can be implemented in 
a pipeline structure which makes a frame rate of 20 
ms (256 lines per frame) possible. A delay of some 
frames between input and output of the analysis de- 



vice is of no relevance. Thus, the algorithm can be 
separated into some sequentially ordered tasks, every 
single step may require up to 20 ms of execution time. 
Furthermore, some operations can be computed in par- 
allel. For example, an image can be filtered with four 
different processors simultaneously. 

D=? D=9 D = 25 

Fig. 6: Sieve filtering 

6. CONCLUSIONS 

The consistent use of principles of human vision and 
the exploitation of a priori knowledge leads to compu- 
tationally fast and robust defect detection algorithms. 
Nonlinear signal processing operations are an essential 
part of the image analysis system introduced above. 
The efficiency and reliability of the methods have been 
verified by the analysis of large real data image se- 
quences. The algorithms can be implemented for real 
time processing by means of available and commercially 
acceptable hardware modules. 
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