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ABSTRACT

Nonlinear image processing algorithms are important
tools for solving sophisticated problems in the domain
of image analysis. In particular, they are a useful and
powerful alternative to linear filtering if objects have
to be detected in real time on the basis of geometrical
properties. In the following part , a nonlinear image
processing system designed for the automatic inspec-
tion of rail surfaces by means of on-line analysis of video
sequences is presented. The inspection of the fixing de-
vices and other components of the track are not consid-
ered here. In our application, nonlinear operations are
used for image enhancement, normalization, detection
of damaged areas on the rail head and filtering of time
series. This paper addresses practical aspects and ad-
vantages of equalizing image histograms, morphological
filtering, binarization of images, and median filtering.

1. INTRODUCTION

In future, railroad lines will have to be checked auto-
matically for defects on the rail surface. An attractive
solution for the task is given by a video sensor unit
and an on-line analysis system that are mounted on an
inspection vehicle (cf. Fig. 1). The first consists of a
light source and a high speed line camera and is de-
signed for speeds of up to 100 km/h of the inspection
vehicle {9]. The subsequent analysis system incorpo-
rates image processing chips and boards and a host
computer. It is able to localize the rail head in the
video images and to detect surface defects on it in real
time. Finally, the analysis results are displayed on a
monitor (cf. Figs. 1 and 2).
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Fig. 1: Video sensor [9]

Fig. 2 shows an example of one video image where
the analysis results are displayed by white vertical lines
for foot and rail head and by a black circle for a surface
defect. Vertical stripes on the rail head that are due
to unavoidable specular reflections make the analysis
more difficult.

Surface defects can also appear in dark zones of the
rail head .



Fig. 2: Detected fault

Since the raw data, which have to be processed, are
a set of images it is reasonable to adopt basic principles
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erate computational complexity. Following this gen-
eral guideline, feature extraction is performed at dif-
ferent resolution levels. Edge information is taken into
account and local neighborhood-dependent features of
objects are calculated. The relations between local and
global image perception and the geometrical forms of
objects are taken into account. Most of these tasks are
performed by nonlinear operations. As far as possible,
algorithms are designed for massively parallel comput-
ing.

2. RAIL HEAD LOCALIZATION

Due to vibrations of the train and thus fluctuating cam-
era angles, positions of foot and head of the rail in the
video images (cf. Fig. 2) vary which means that they

have to be redetermined from frame to frame. A reli-

able localization of the rail head and its surface defects
can only be realized by the analysis of features derived
on the basis of a two-dimensional signal. Hence, the in-
dividual image lines generated by the camera are sum-
marized to form frames of 256 x 256 pixels in size (cf.
Fig. 2). On the basis of Gaussian and Laplacian image
pyramids (cf. [1], [4], [8], and [11]) suitable features for
head detection are derived in different resolution levels.
The latter are computed by low pass filtering and sam-
pling rate reduction. The features have been chosen in
such a way that a two step procedure for the localiza-

tion of the region of interest (ROI) is possible, which
saves computation time. Surface characteristics as well
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as edges of the rail have been taken into account. On
the basis of the local edge density (cf. [1]) a raw rail
localization is determined within a low resolution im-
age level. This behavior is very robust with respect to
illumination conditions and independent of the rails’
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is used for the exact localization of the rail. Images
are normalized by equalizing histograms (cf. [12]) so
that textures and edges are improved. Th1s operation
leads to a normalization of the variance of the whole
image and to a more homogeneous distribution of lo-
cal signal variances. Large homogeneous regions of the
image correspond to high histogram values and lead to
a large magnification of the gray levels in this domain.
However, equalizing the histogram also amplifies noise
which makes an additional low- pass filtering necessary
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Edge detection is performed by the application of
the Marr-Hildreth operator (cf. [5]) which includes
LoG-filtering and searching for zero crossings of the
output signal. The LoG-filter represents a two-dimen-
sional band pass and is of major importance in the
processing of visual information by animals. For exam-
ple, the receptive field of bipolar cells in the retina op-
erates approximately like a LoG-filter (cf. [6]). Math-
ematically, a LoG-filter is equivalent to a Gaussian
low-pass filter cascaded with the Laplace operator. In

the first step, noise and very small structures are sup-
nressed hv the ]nw_naqq ﬁ]fnr and in the second. in-
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tensity variations (edges) are detected by means of the
Laplace operator (cf. [5]). The latter is the isotropic
derivative operator of the smallest order. Hence, its use
for edge detection is very efficient (cf. [5]) compared
to direction dependent gradient operators. Further-
more, the advantages of the LoG-filter, e.g. compared
to the Sobel operator, have been confirmed by many
computer simulations. The incorporated low-pass fil-
ter makes the Marr-Hildreth operator resistant with
respect to anomalities in real data. In contrast to this,
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the search for local maxima of the filter output signal
which is relatively time consuming. In view of this fact,
the Marr-Hildreth operator has been preferred Wthh
ensures that the signal is locally smoothed (low-pass
filtering) and edges are marked at zero crossings of the

filter output signal.

The localization of zero crossings leads to a binary
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operation. It extracts two-dimensional local geometric

information like edge contours. Information concerning

steepness of edges is hereby eliminated which is impor-
tant for global image perception.



Fig.3:

a) Original image,

b) Frequency response of the filter, -
¢) Binary edge contour,

d) Smoothed edge projection.

Raw rail localization is based on a high resolution
level. At this level, vertical disturbing stripes have to
be suppressed by combining LoG-filtering with angular
filtering. In Fig. 3b, the magnitude of the frequency re-
sponse of this combined filter is depicted. For example,
filtering of image a) in Fig. 3 in combination with the
detection of zero crossings leads to the binary edge con-
tour ¢). Subsequent low-pass filtering reveals the local
edge density. Finally, the rail position can be localized
by using the maxima of the vertically projected edge
image. The low-pass filtering and projection operations
can be interchanged. The low-pass filtered version of
the vertically projected edge image is shown in Fig. 3
d) and its analysis permits the raw rail localization (de-
finition of ROI) with respect to its horizontal position.

The exact positions of the edges of foot and head of
the rail in the video images are determined in the do-
main of the already determined ROI. This is done on
the basis of a high resolution level where four parallel
lines (edges) are searched. For this purpose, vertical
stripes caused by unavoidable specular reflections on
the head have to be ignored which is done by taking
into account only the first two lines on the left and
right-hand side, respectively. More precisely, in the
first step the histogram of the image is equalized and
the result is filtered by a LoG-operator. The detection
of the zero crossings is done in such a way that vertical
edges are preferred. In general, line detection on the
basis of an edge image can be implemented by means of
local and global projections, respectively. Small angu-

lar deviations of the rail from an exact vertical position
can be neglected in this application which implies the
simple use of column sums (vertical projections) for
line detection. However, the edges of foot and head ex-
hibit many breaks due to strong distortions. Further-
more, additional vertical edges appear in the images
which are not caused by foot or head but for example
by the fixing devices. In these cases, projections arc
not sufficient for a robust localization of foot and head
of the rail. This problem is solved by using morpholog-
ical line analysis (filtering) methods. The principles of
these nonlinear processing schemes will be illustrated
by discussing Fig. 4. Its first row shows the original
edge image (Fig. 4a) and the results of morphological
operations applied to it (Fig. 4b and c). The lower row
shows the calculated vertical projection. First, the op-
eration ”closing” together with the structural element
"short vertical line” (cf. Fig. 4b) is applied for closing
short gaps in the edges of foot and rail head . Sub-
sequently, the operation ”opening” together with the
structural element ”long vertical line” is used for the
elimination of short edges which cannot be caused by
the rail edges (cf. Fig. 4c).
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Fig. 4: Nonlinear processing of edge image.

a b c

Mathematically, the operations opening (0) and clos-
ing (C), respectively, can be formulated as [7]

O) =(bOSEL) D SE;,

C(b) = (b&® SEL) © SEL,

where b is the binary image, SE; the structural ele-
ment ”vertical line”, @ stands for dilation, and © for
erosion.

3. TEMPORAL ON-LINE FILTERING

Individual errors of the algorithm described in the last
section for the exact horizontal rail localization in the



image can be bridged by means of interframe filtering.
The series of computed horizontal coordinates of the
rail (one in each frame) can be considered as a discrete-
time signal. The suppression of local errors would be
possible by means of low-pass filtering. However, good
filters with narrow transition bands have large group
delays which leads to memory problems in an on-line
system (many images have to be stored). For example,
a causal linear phase FIR low-pass filter of the order
N has a group delay of N/2 samples, i.e., if we process
image number i, then we obtain the filtered version
of the rail position for image number i-N/2 Hence,

EIIE buosequent ue[e(,l: UBEELEIUH I'unll'tb Bne bEOl'H.ge OI

the last N/2 images. Similar considerations apply to
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row transition band can be designed with low order,
however, they cannot have a linear phase. A better
alternative is offered by the use of nonlinear median
filters. For example, a median filter of the order five
requires the storage of only three images and it is able
to eliminate up to two errors in a sequence of five im-
ages. Experiments with real data showed that such a
median filter of the order five is indeed sufficient for
the application considered.

The rail head represents the region of interest for the
localization of damage (cf. Fig. 5a). Latter can be
identified due to the geometric forms and the difference

from the surrounding with respect to gray level values.
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Fig. 5: Suppression of vertical stripes

=

he unavoidable specular reflections from the rail
head lead to disturbing vertical stripes in the images
(cf. Fig. 5a). They have to be eliminated by means
of angular filtering. For this purpose, the already lo-

calized ROI (rail head) is divided into horizontal equi-

spaced stripes (blocks) The number of blocks depends
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wards, angular filtering can be performed for all blocks
in parallel. Here, filtering is carried out in the fre-
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quency domain on the basis of an FFT, which is ap-
proximately the same as subtracting its respective mean
value from each column of a block. As a consequence,
the filter output signal has positive and negative values
which means that its magnitude has to be determined
before a level detection operation can be performed.
Afterwards, the background appears nearly homoge-
neous and its signal values cause a peak near to zero
in the histogram. In contrast to this, the signal values
stemming from damaged areas influence the histogram
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ground peak. Hence, a suitable threshold for binariza-
tion can be easily defined. The geometrical properties
of defects are enhanced in the binary image. Isolated
white pixels can be interpreted as noise and are re-
moved by means of a simple morphological operation.
The remaining white domains are sorted with respect
to its diameters since small patches on the surface arc
not considered as relevant faults (cf. Figs. 5¢, 5d, and
6). Morphological sieve fiitering [10] is used for the de-
tection of objects which cannot be encircled by a circle
of prescribed diameter. Mathematically, the filter itself
can be described as follows [10):
SF(b) = (b® MSE¢) © ASEp,

where b is the binary image, @ stands for dilation, © for
erosion, A represents a scaling factor, SEq the struc-
tural element "circle”, and SEp the structural element
?disk”. The sieve filter performs a bina.ry decision with
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cepted or eliminated as a whole. The results of this

nonlinear operation is illustrated in F‘m 6. Depen-

dent on their size and the diameter D (m pixels) of the
structural element, patches are accepted or eliminated.

5. SPECIAL PURPOSE HARDWARE

The image analysis introduced above is based on two-
dimensional filtering, FFT, morphological operations
like dilation and erosion, equalization of histograms,
and binarization. The parallel execution of operations
is unavoidable in order to realize real time processing.
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are commercially available which execute the above
tasks with specially designed architectures. In the pre-
sent application, such modules can be implemented in
a pipeline structure which makes a frame rate of 20
ms (256 lines per frame) possible. A delay of some

frames between input and output of the analysis de-



vice is of no relevance. Thus, the algorithm can be
separated into some sequentially ordered tasks, every
single step may require up to 20 ms of execution time.
Furthermore, some operations can be computed in par-
allel. For example, an image can be filtered with four
different processors simultaneously.

Fig. 6: Sieve filtering

6. CONCLUSIONS

The consistent use of principles of human vision and
the exploitation of a priori knowledge leads to compu-
tationally fast and robust defect detection algorithms.
Nonlinear signal processing operations are an essential
part of the image analysis system introduced above.
The efficiency and reliability of the methods have been
verified by the analysis of large real data image se-
quences. The algorithms can be implemented for real
time processing by means of available and commercially
acceptable hardware modules.
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