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ABSTRACT 

A new adaptive near-information 
preserving image encoder that employs optimum 
predictive technique and that is insensitive to 
the type of image or the segmentation method 
employed, is presented. The encoder uses a 
non-symmetric half plan NSHP region of 
support (ROS) as well as a binary image that 
identifies the various regions of the segmented 
image as either stationary (i.e., homogenous) 
regions or non-stationary (i.e., transition) 
regions. Encoding is implemented via linear 
predictors whose coefficients, region of support, 
and prediction error quantization adapt 
depending on pixels location in the binary 
image. Reconstructed images are compared 
with those of segmentation based two-source 
coding algorithms and found to be objectively 
and subjectively significantly better. 

1.0 INTRODUCTION 

1.1 Non Adaptive Predictive Coding 

Methods 

Let x(m, n) represents the pixel value of a two 
dimensional (2D) image at the position (m, n) 

and 2 (m, n) represent its predicted value. To 
remove the redundancy, the predicted pixel 
value is subtracted from original pixel value to 
produce the prediction error, e(m, n) as follows: 

e(m,n) = x(m,n) - ?(m,n) . The prediction 

error may be quantized e,(m, n) for possible 
storage or transmission to the decoder via 
communication channel, and the reconstructed 

pixel d(m, n), for both the encoder and the 
decoder is defined by the following : 
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$K?z,~) = z(m,n) + e4 (m,n) . In order to 

obtain information-preserving compression, the 
prediction error is encoded in a Fano or 
Huffman code which recognizes that small 
errors are more likely than large errors. Often 
the errors are transmitted using crude 
differential pulse code modulation (DPCM) to 
avoid the complexity of Fano-Huffman type 
encoding. While this procedure is effective, it is 
not information preserving [I], [3]. 
In the two dimensional case, a linear AR 
orediction is defined as 

(i.jkW 

where b(i, j) are the prediction coefficients, W is 
the region of support, and b,, is a bias that satisfy 

the condition E[x(m, n) - 2 (m, n)] and found to 

beequalto: bO= [l-c xb(i,j)],~ where 
(i.jkW 

p is the mean value of x(m, n). Substituting 
for the bias b, the linear AR prediction becomes 

The linear prediction coefficients are determined 
by minimizing E{e’(m, n)}, the mean squared 
value of the 2D prediction error, with respect to 
b(1, j) to produce the correlation function : 

Ck.l=C Cb(i,j)Ck-i.I- j 
(i.jkW 

where Ck,l = E [x(m, n) x(m-k, n-l)] are the 
covariances to be measured. This enables the 
solution to the various covariances of the 
chosen window i.e., the 13 different covariances 



of our 6-pixels window (i.e., ROS) shown in 
Figure 1 below. 

Figure 1. The 6-pixel ROS 

2.0 THE PROPOSED ADAPTIVE 

NEAR-INFORMATION 

PRESERVING ALGORITHM 

Assume that an image (I) can be segmented into 
a finite set of disjoint homogenous and 
transition regions, i.e., I = Uvci,j, x(i, j) = Uk RHI; 
U, Rn where Hk and Tl represent homogenous 
and transition regions respectively. Transition 
regions are treated alike whether or not they are 
merged. Further assume that the pixels in any 
homogenous region are independent of pixels in 
any other region. ThUS E{ xHk (i, j&kc ) = pk, 
where c represent the complement and pk is the 
average value of the kth homogenous region. 
Under these conditions, the optimal causal 
predictor is given by XHL (i, j) = E(xm (i, j) /RHI; 
past], where RHk past = Ipast n Rm. For 
Gaussian pixels, the optimal estimator is linear 
and can be written as : 

wr UT 

where Wr is the intersection between some 
maximum region of support W,,, and Rm past, 
and x(i, j) are the reconstructed image pixels. 
The optimum prediction coefficients a(m, n) are 
determined from the Yule-Walker equations that 
are based on correlation measurements {C(m, 
n)) in each of the homogenous regions which 
need to be encoded. 
Very small homogenous regions are best treated 

as transition regions. The number of 
coefftcients, as well as the error variance (0, 2, 
depends on the size of the window WT. The 
prediction error (e) is replaced by fK for single 
bit quantization. The best K is given by K = E( 
lel}=[20e2/n] “2 for Gaussian errors. The 
error variance ranges from the value obtained 

for W = W,,, up to the measured texture 
variance, C(O,O), if there are no pixels in the 
region of support. 
We assume that texture details in nonstationary 
regions are relatively unimportant, and hence 
pixels in transition regions are predicted by local 
mean estimates over WM. The optimal error 
quantization value in the transition regions is 
found by trial and error within a specified range, 
as mentioned above. This value is encoded along 
with average values and the correlation 
measurements of each homogenous region. 
If the pixels can bc considered Gaussian, then the 
optimal estimator is a linear estimator, or 

IHK(i.j) = C z a(m,n).d(i - m, j - n) + bo 

where Wr is the inter-section between a maximum 
region of support W,, and the past of Rm i.e. W, 
= W,, n RM past. When encoding homogeneous 
regions, the optimal single bit quantization value 
was calculated. The optimal prediction coefficients 
are determined from Yule-Walker equations and 
the adaptive ROS mechanism. 
Predictions can not be made in nonstationary 
transition regions. In the proposed algorithm, 
transition regions are predicted via local mean 
estimates of the pixel values in the region of 
support from : 

where N is the total number of pixels in the 
window, WT. 
The difference between the actual pixel value and 
predicted pixel value is the prediction error e, = x, - 

“x “. We replace e,, by f K for single bit 
quantization. To obtain the optimal single bit 
quantization for the stationary homogeneous 
regions, we minimize the mean squared error 
given by E [(K - lel)2]. By taking the partial 
derivative with respect to K and then equating to 
zero which leads to K = E [lel]. If f(e) = N (0, (3 ,‘) 
where 9 is determined for homogenous regions 
from Yule-Walker equations; then : K = o, d(Urt). 
If the maximum ROS is used (i.e., we are 
considering pixels in the interior of a homogeneous 
region). Gn the other hand, if there is no pixels in 
the region of support other than that to be 
predicted, then we set 0, 2 = C(0, 0) where C(0, 0) 
is the measured texture variance. In general, for 
pixels near the edges of regions, K can assume 
values in the range given by : 



where C(O,O) is the measured covariance of the 
homogenous region. 
The optimal quantization value for the transition 
regions is usually larger than in the homogeneous 
regions. An appropriate value for these regions can 
be found by a trial and error process. This value is 
encoded along with other statistical measurements 
for each of the homogeneous regions in the image. 

3.0 SIMULATED TEST IMAGE 

To assess the performance of the proposed 
algorithm, a special test image of 128 x 128 pixels 
was generated as shown in Figure 2 (Note : the 
results of the several test and real images are 
reported in a paper to the IEEE transaction on 
image processing). The chosen test image is 
nonstationary in the sense that it has a space 
varying mean gray level value and spacevarying 
texture. The test image consists of several 
homogeneous regions (objects and background) 
and two slowly changing nonstationary transition 
regions. Texture was generated that is a Gaussian 
and autoregressive process. Two different windows 
were employed for this purpose. The first is a 3 x 3 
, quarter plane region of support predictor and the 
second is the 6pixels window with a NSHP ROS 
shown in Figure 1. The weights of each window 
add up to unity for convenience. Also, to produce 
more textures for the different regions, two 
variances were chosen for the texture. Those were 
4 and 16 respectively. For each region in the image 
a window and a variance value were chosen that 
are different from neighboring regions. 

4.0 SIMULATION RESULTS 

The mean squared error is the criteria 
used to test the fidelity of the reconstructed 
images of the four different methods. The MSE 
is given by : 

n=O m=O 

Table 1. depicts the MSE of reconstructed 
images of the four methods. The results show 
that the Proposed Method achieved a small 
MSE, less than one (0.98), which translates to a 
very high signal-to-noise ratio compared to a 
MSE of 155.5, 7.10, and 7.01 for the standard 

one source DPCM, TS-LMS, and TS-DPCM 
respectively. To show these results subjectively, 
we have displayed row 25 of the image for each 
method as shown in Figures 3, 4, and 5 
respectively. A close look at these plots reveals 
that the one-source (standard) DPCM behaved 
poorly on and near edges, thus causing quality 
degradation and generated high noise in 
homogenous regions. As for the two source 
coding TS-DPCM and adaptive TS-LMS 
methods, they failed to track variation in texture 
in homogenous regions as well as different 
texture in different regions. These results are 
obtained with almost perfect separation of the 
underlying structure from the textural image 
which is very difficult to obtain under normal 
processing. The sudden change of texture in 
the different regions caused the TS-LMS method 
generated a non-stable encoder which 
necessitated recalculation of the stability factor 
and re-implementation of the encoder. 

Table 1. The MSE of the four coding 
techniques 

TECHNIQUE MSE 

Standard DPCM 155.5 
TS-LMS 7.10 
TS-DPCM 7.01 

I THE PROPOSED ALGORITHM 1 0.98 

5.0 CONCLUSIONS 

We have presented a new adaptive near- 
information preserving predictive encoder for 
images with arbitrarily shaped image segments. 
The proposed algorithm targets a wide range 
applications where information preserving is of 
primary concern. This algorithm has several 
advantages over predictive coding techniques, 
DPCM and adaptive LMS methods. First, the 
proposed encoder significantly outperforms the 
idealized two-source DPCM and LMS methods 
by achieving nearly 7.1 times less MSE than 
either of the two methods and 155.5 times less 
than the standard DPCM method while 
maintaining almost a perfect tracking of texture 
variation in homogenous regions and from one 



region to another. Second, edges were near 
optimally preserved without additional cost in 
MSE or tracking texture variations. Based on 
objective and subjective results obtained, we can 
claim that the proposed encoder is a near 
information preserving algorithm. The binary 

image and statistical measurements require 
approximately 0.03 bits/pixel. 
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Figure 2. Test Image 

Figure 4. TS-LMS method 
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Figure 3. Standard DPCM Figure 5. The Propose Algorithm 


