AN EFFICIENT ALGORITHM FOR 3D BINARY MORPHOLOGICAL

ot N7t o Vi T AT TETTIITT

N Ty Ty TR T N ENE T AT TS

TRANSFORMATIONS WITH 3D STRUCTURING ELEMENTS OF
ARBITRARY SIZE AND SHAPE

Nikos Nikopoulos and Ioannis Pitas

Department of Informatics, University of Thessaloniki
GR-54006 Thessaloniki, GREECE
Tel. /F‘ax +30-31-996304

e—mall. pitas@zeus.csd.auth.gr

ABSTRACT

This paper proposes a fast algorithm for implement-
ing the basic operation of Minkowski addition for the
special case of binary three-dimensional images, us-
ing thran Al angicanal cdbnstndirring alaranta ~AF anhilbnowe
1115 LLIITO-U41111Tiloluilal ol uvivul 1115 TICILITIILD UL Al LILL dly
size and shape. The application of the proposed algo-
rithm for all the other morphological transformations

is straightforward, as they can all be expressed in terms
of Minkowski addition. The efficiency of the algorithm
is analysed and some experimental results of its appli-
cation are presented. As shown, the efficiency of the
algorithm increases with the size of the structuring el-
ement.

1. INTRODUCTION

Over the last two decades, Mathematical Morphology
(MM) has proven itself as a powerful image processing
and analysis tool {1, 2] A plethora of successful appli-
cations of MM in different fields have been presenied
in the bibliography. A problem arised from the early

stacos of MM was the hich comnutational comnlovity
SLages O Mivi Was Ui nign ¢ompuiationa: CoOMpacXivy

of the basic morphological transformations, that is di-
lation and erosion [1]. This problem has put a brake
in the application of MM in 3D image processing and
analysis, which is also very promising, although the
basic theory of MM is based on set theory and is not
restricted to two dimensions.

Many different techniques have been proposed for
implementing the basic morphological operations more
efficiently than by using their definition. Many of them
involve the use of parallel computers or specialized hard-
ware. Other techniques are strictly restricted to 2D im-
ages [4, 5]. Also, most techniques are applicable only

F[\f efrnpfnrn\g nlnmnnfc {\f‘ Q'I'\Df"ﬂf‘ ehano or QIVC\ 9]_

VL SuViuluiediil CiCIICILS POl SAapc O S14C, ad

though the use of structuring elements of arbitrary size
and shape can be very interesting in several applica-

tions [4]. For large structuring -
tion in small structurmg elements can be applied |3, 6]
which is generally computationally intensive. One of
the most interesting and efficient algorithms for the
fast calculation on conventional computers of the basic
morphological operations for 2D images is presented in
[4]. However, that algorithm cannot be extended di-
rectly in the case of 3D images due to the use of chain
coding.

The present paper proposes a fast algorithm for im-
plementing the basic operation of Minkowski addition

LUl uxc bpcbldl CdadC Ul Ulllle OU lllldgb'S \VUlullltfb}q
using 3D structuring elements of arbitrary shape and

size. BRasicallv, it introduces a suitable modification of

size. Bagically, it introduces a suitable modification o
the approach [4] that enables the extension of its basic
idea in the 3D case. The use of this algorithm for all
other morphological operations is straightforward, as
they can all be expressed in terms of Minkowski addi-
tion. On conventional computers, this algorithm can
provide a substantial reduction of the execution time
in comparison to the corresponding time when the def-
inition is used, even to less than the one twentieth in
case of large structuring elements.

In the following, the theoretical background of the
proposed algorithim is first presented and then the algo-
rithm itself is described. Also, its computational com-

nlnvrfv 19 nnalvcnrl "I'nf‘ SOmae nvnnnmnnu

PaCALLy 15 Qilaldy STU alil SLULC CApPCLIINCL

al results of its

Qi 1ONUALS U1 iU

application are given.

2. THEORETICAL BACKGROUND

In this section, we shall give first some notations and
than wa achall neacan + o n. coram o which +ha alaaritham
uucu wWT Dliall 1.11 COTIIL @ L1ICUL TALL UlLL Al1UCLL LI O:lsUl. dulliil
is based.

In this paper, we are concerned about binary 3D
images. A digital binary 3D image I is a mapping

defined on a certain domain D; ¢ Z3 and taking its

values in {0;1}:
D - {0;1}
{52 % 2

Z3 denotes the digital 3D space. The definition domain
Dy of I is generally an orthogonal parallilepid. In the
framework of Mathematical Morphology, we are inter-
ested in the set of feature voxels (volume elements) of a
binary 3D image, i.e. the voxels with value 1 (1-voxels),
which is usually regarded as a point set in the case of
the set being transformed, or as a vector set in the case
of the structuring element [1] that is used for the mor-
phological transformation (a 3D structuring element B
can similarly be represented by a 3D binary image Ip
defined in a domain Dy, C Z3).

Let B be a subset of Z3, considered as a vector
set. We denote B the transposed set of B, that is its
symmetric set with respect to the origin O = (0, 0):

B={-b:be B} (2)

We denote B, the translated of set B with respect to
the vector x € Z3:

B, ={b+z:be B} (3)

We also denote B the complement of set B:
BC = {be Z3: b ¢B} (4)
Let A and B be two subsets of Z3. Their Minkowski

addition, denoted A & B, and their Minkowski subtrac-
tion, denoted A & B, are given by:

A®B = {zeZ®:3beB,z-becA} (5
= {a+b:acAbe B} (6)
AcB = {ze€Z®:VbeB,z-bc A} (7)
(A° ® B)° (®)

It is well known that all morphological transformations,
from the simplest (dilation, erosion, opening, closing)
to the more complex ones, are based on Minkowski ad-
dition and Minkowski subtraction [1]. Moreover, as de-
rived from (8), Minkowski subtraction can be reduced
to Minkowski addition. Therefore, in order to imple-
ment any morphological transformation, it suffices to
implement the Minkowski addition.

The algorithm presented in the next section is based
on the following easily proven theorem [4], which in-
troduces an alternative way for calculating Minkowski
addition:

THEOREM: Let X be a subset of Z3 and Surf(X) C
X the set of all surface points of X. Also, let B C Z3 be
an arbitrary structuring element made of n connected
components By, By, ..., By, and for each i € [1;n] let b;
be an arbitrary point included in B;. Then, the follow-
ing relation holds:

XoB={ |J X, |uSurf(X)®B) (9)

i€[1;n]

Assuming 26-connectivity in a 3 X 3 x 3 neighborhood,
the set Surf(X) practically includes all the voxels of
X that have at least one non-feature voxel (0-voxel) in
their 26-neighborhood.

3. ALGORITHM DESCRIPTION

In this section, we introduce an algorithm for calculat-
ing Minkowski addition of a 3D object X with a 3D
structuring element B, based on (9). We assume that
X is stored in a 3D image I defined in a domain Dy
(3D array), B is stored in a 3D image Ip defined in
a domain Dy, and the output X @ B is written in a
3D image I’ defined in a domain D; (with sufficient
dimensions).

The algorithm includes three steps: surface track-
ing and encoding, structuring element encoding, and
output calculation. Each step is described in detail be-
low.

3.1. Surface tracking and encoding

This step aims at finding the set Surf(X), that is the
set of surface voxels of X, and coding it in a way suit-
able for the output calculation step. The proposed ob-
ject surface coding is a novel one, specialized for this
algorithm. The object surface is represented by voxel
lists. We assume that Surf(X) consists of n{X) dif-
ferent connected surfaces Si,...,Sn(x). The number
of connected surfaces can be equal or greater than the
number of connected components of X, depending on
whether there are connected components with inter-
nal “holes” or not. Each S; is coded as a list of Ng,
structures, where Ng, is the number of voxels of S;.
Each structure contains the position of the correspond-
ing voxel ps; j, j € [1; Ns,] of S; and an array of links
di(ps,,;) € [1;26], | € [1;1(ps,,;)] to other voxels of
S; in its 26-neighborhood. A link is in fact the direc-
tion d € [1;26] of movement from the current voxel to
the voxel being linked. These links are a key point in
achieving the efficiency of the algorithm. The following
rules are employed:

o The first voxel pg,,; of each S; is not linked from
1

another voxel.
e Each of the other voxels ps, ;, 7 € [2;Ns,] is
linked from only one other voxel of S;.

Each voxel can have links to more than one other
voxels, or to none.

Surface tracking and encoding is achieved efficiently
in one scanning of Dy, by using a “burning” procedure
and by utilizing proper labelling of 1-voxels to avoid
repetitions in value checking. During the global scan-
ning, if a 1-voxel is reached, then, if it is an internal
voxel it is labelled with a value 3, whereas, if it is a

buud(,e vuxe1 lL lb u)ualueleu as l:lle lllﬁb VU)(tEl Ul a
connected surface, which is subsequenly tracked in a

hurn-like manner: The firet vaxel ig lahelled with =
CUrn-ixe manner: 1ne marsy voxe: Is iapeiie witih a

value 2 and is put in a FIFO stack. For each voxel ex-
tracted from the stack, we examine the voxels in its 26-
neighborhood; we put links to the surface voxels that
have not already been linked, we label them with a
value 2 and we put them on the stack, whereas the
internal voxels are labelled with a value 3. When the
stack is empty, all the voxels of the current connected
surface have been tracked and coded and the global
scanning is continued from the first voxel, so that all
other connected surfaces are tracked and coded in the
saime way.

At the end of this step, one optional further simple

scanning of Dr mav be necessary in case the innut 3D

LR LLLAL, = Miadalib ol Sl it ALL LU VRS Sl
image I should be left unchanged. That is, all 1-voxels,
which have been labelled during the first scanning, are
restored to value 1.

3.2. Structuring element encoding

In order to achieve efficient output calculation, an ap-
propriate encoding of the structuring element B is also

Ac it will ha coan in tha third cten it is

rannirad
410 10 will UT OUTII 11l LUT vl swep, 15

iTyuLITU.

important to find and keep the ets Sur fg(B), of the

Y
surface voxels of B in each direction d € [1 6] given

by: S
Surfqs(B)={p€ B:p+i4 ¢B} (10)

where 1y is the vector from a voxel to the voxel in

matabhh et a3 Al md I A ML
‘lU'llD‘lsLlUUI HUUu I.Ll ull ULI.-I.UH. @, AlT

the following elements:

anceding inalss
CTlLILUULLLE 1i1U1W

e n(B): the number of connected components of
B.

o s(B): the size of B, i.e. the number of 1-voxels of
B

o N

o {s4(B)}de[1;26): the sizes of the sets Surfq(B).

e A(B): an array of size s(B) of all voxels (vectors)
£ D

O1 D.
o {Au(B)}4e1;26): arrays of respective size sq(B)
of the voxels (vectors) of the sets Surfys(B).

flaoon: a variable whaoge value is 0 if B doeg n
J¢@gp: a variabtie wilgse vaiue lIs U I & qoes it

contain its center, or, otherwise, the label (i
the number) of the connected component of
holding the center.

nt
v
le.

B

o {pi(B)}icpin(m)): array of size n(B) of arbitrary
voxels (vectors), such that p;(B) € B;, Vi €
M-n{BY where B. is th

a
[y P Lo j, WIICLIC 155 15 LLUT

component of B.

roaanantivva Ao 4+l
LTOPTLLIYVE Lulllitultu

The encoding of the structuring element is achieved
with a similar procedure as that of tracking and en-

P TN

coding the set Surf(X). The difference is that we do
not discriminate between surface and internal voxels

mnAd dhat inagban A Af fAavenine thn areandine ~F Qon £ V'Y
o.uu llll.d:ll, 1115l:CCLL1 O1 10T ll..l.l.ll.b bllU Uuuuuxug Ul oW/’ J \A),

we put each 1-voxel encountered in array A(B) and, if
needed, in one of the arrays A, (R\ de f1 96] Also,

we easily update the other elements of the encoding
during the scanning.

3.3. Output calculation

Output calculation, in fact, implements (9). We as-
gqume that D.. ic initialized m.o-ln o values Thus w,
DuLiiC Ullab Ul 10 Axxuucuxucu ¥iull ‘JCLU YaLUuTO. 1L1luoy wo

need only to set the 1-voxels of Dy.

First, we form the set | ;1.) Xp.(B) by assign-

{1;n(B)] " Pe(B)

ing the value 1 to the voxels of Dy belonging to the
set U e x U,Ch 7,(5“(1) + p;(B)) Next, we form the set
Surf () & B by propagating B along the voxels of
Surf(X), which, as it is easily proven, is equivalent
to assigning the value 1 to the voxels of Dy belonging
to the set Uiep;nex) Upeasy®sia + p) + Ujeping,)
Uteptittws,.0 Ure du s, ()PS0 + Tai(ps,) TP)]- As
it is obvious from the last expression, we make use of
the fact that when propagating B from a surface voxel
to another surface voxel in its neighborhood, we need
only to add the voxels of the set Surfy(B), where d
is the direction (the link) from the first voxel to the
second. This leads to the extremely fast calculation
of Surf (X) ® B. Considering also the fact that only
the set Surf(X) is used, instead of the entire X, we
can have an idea of the efficiency of the presented al-

agorithm
§OI1viliil.

The efficiency of the above algorithm is the result of
processing as few voxels as possible during each step
of the algorithm, especially in the output calculation

step as explained above. Although the step of surface
tracking and encoding and the step of structuring el-
ement encoding (in case of structuring elements with
large size) can require a significant percentage of the
overall operations, the output calculation step is very
efficiently performed, in comparison to the number of
operations needed when implementing the Minkowski
addition by using its definition. The same stands for
the case when we use the above mentioned algorithm
for implementing the dilation or erosion. Also, since
the time needed for the surface tracking and encoding
step for a specific 3D image is constant, it is expected
that the overall time of all three steps becomes com-
paratively much smaller as the size of the structuring
element increases.

In the following, the computational complexity is
measured with the number of accesses to a voxel of a
3D image, either for examining its value, or for assign-
ing a new value (basic operations). From the above
description, we can easily show that an upper bound
for the number of basic operations Ngo performed by
the algorithm is (not including the steps of restoring
the labelled 3D images to their initial values):

Npo =N; + (27+n(B)) X NII
+(26 + s'(B)) x Ng + Ni,
+(27 + n(X)) x s(B) —n(X) x s'(B) (11)

where Ny is the number of voxels of I, N} is the number
of 1-voxels of I, Ng = Zi‘f) Ng, is the number of

voxels of Surf(X), Ny, is the number of voxels of Ip,
and §'(B) = max;e[1;26) 8i(B)-

The number of basic operations N, performed by
a trivial implementation of Minkowski addition using

its definition (6) is:
Npo = N1 + (N1 +5(B)) x N (12)

since we need to perform an entire scanning of I and,
for every 1-voxel of I, to scan Ip and assign 1 at the
appropriate voxel of the output I' for each 1-voxel of
Ig. Usually, in (11) and (12) the terms related with
N} are the most significant. For structuring elements
larger than 5x5x5, it is 27+n(B) < Ny, +s(B), which
explains the efficiency of the presented algorithm.

In Fig. 1, we give some experimental results of the
application of the presented algorithm in the calcula-
tion of the dilation of a test binary 3D image with struc-
turing elements of different size. We compare the exe-
cution time of the proposed algorithm and of that using
the definition of Minkowski addition (6). The data of
Fig. 1 are also illustrated in Fig. 2. As derived from the
experimental results, for a small structuring element of
size 3 x 3 x 3 the overall execution time is compara-
ble for the two cases. The efficiency of the algorithm

| SEsize [&1 [tf [t |

3x3x3 2.83s [0.23s | 2.13s
5x5x5 3.05s | 0.44s | 7.71s
7TXT X7 3.46s | 0.86s | 20.03s
9x9x9 4.13s [1.52s | 41.83s

11 x 11 x 11 || 5.12s | 2.74s | 76.20s

13 x 13 x 13 [6.42s | 4.05s | 127.44s

15 x 15 x 15 || 8.17s [5.84s | 195.36s

17 x 17 x 17 || 11.22s | 8.44s | 291.92s

(a)

SEsize | &-100% | & -100%
3x3x3 132.86% | 10.80%
5x5x5 39.56% 5.70%
TXTx7 17.27% 4.30%
9x9x9 9.87% 3.63%

11x 11 x 11 6.72% 3.60%

13 x 13 x 13 5.04% 3.18%

15 x 15 x 15 4.18% 2.99%

17 x 17 x 17 3.84% 2.89%
(b)

Figure 1: (a) Execution times of the dilation of a
128 x 128 x 128 binary 3D image with cubic structuring
elements (SE) of different size. #;: execution time using
the presented algorithm. #{: part of #; corresponding
to the output calculation step only. f5: execution time
using the definition of Minkowski addition. {on a Sil-
icon Graphics Indy MIPS R4400 200MHz workstation
running IRIX 5.3), (b) Comparison between the above
execution times.

is obvious for structuring elements of size 5 x 5 x 5
or larger. Undoubtedly, the larger the structuring ele-
ment, the greater the gain if the present algorithm is
used. Considering only the execution time of the out-
put calculation step, this is much smaller than that of
the case when the definition is used, even for a small
structuring element of size 3 x 3 x 3. This fact reveals
also the gain of using the proposed algorithm in an
application where e.g. a 3D image needs to be dilated
successively by different small structuring elements; in
such an application, the surface tracking and encoding
step, whose execution time dominates over that of the
output calculation step for small structuring elements,
needs to be performed only once in the beginning.

250

Execution time {sec)

[} ——

3x3x3 5x5x5 TxXT<7 x99 11xi1x11 13x13x13 16x15x15 17x17x17
Size of SE

(a)

14

2 —-—

\ A2 -—
12
1
08
06
0.4
02

BAA 5xEx5 TxIxT 9x9x9

1x1ix1t 13x13x13 15x15x15 17x17x17
Size of SE

(b)

Figure 2: (a) Diagram illustrating the values of Fig. 1a.
(b) Diagram illustrating the values of Fig. 1b.

5. CONCLUSION

In this paper, we presented a very efficient algorithm
for the implementation of Minkowski addition for the
special case of 3D sets represented by binary 3D im-
ages, using 3D structuring elements. It can easily be
modified for the implementation of all the other mor-
phological transformations. The algorithm does not
pose any restrictions on the shape or the size of the
structuring elements. The efficiency of the algorithm
was analysed and some results of its application were
presented. As it was made obvious, the efficiency of
the algorithm is significant for 3D structuring elements
larger than 5 x 5 x 5.

[1]

2]

8]

[4]

(5]

[6]

6. REFERENCES

J. Serra, Image Analyszs and Mathematzcal Mor-

Anmn\ Dracs

J. Serra, ed., Image Analysis and Mathematical
Morphology, Part II: Theoretical Advances, Aca-
demic Press, London, 1988.

1. Pitas, A.N. Venetsanopoulos, Nonlinear Digital
Filters: Principles and Applications, Kluwer Aca-
demic Publishers, 1990.

L. Vincent, “Morphological transformations of bi-
nary images with arbitrary structuring elements”,
Image Procesing, vol. 22, no. 1, pp. 3-23, January
1991.

L.J. Piper and J.-Y. Tang, “Erosion and dilation
of binary images by arbitrary structuring elements
using interval coding”, Pattern Recognition Letters,
pp- 201-209, April 1989.

H. Park, R.T. Chin, “Decomposition of Arbitrar-
ily Shaped Morphological Structuring Elements”,
IEEE Trans. Pattern Anal. Machine Intell., vol. 17,
no. 1, pp. 2-15, January 1995,

