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ABSTRACT
There are two types of distortion of the loudspeaker

system, the linear and the nonlinear distortions. We have
tried to eliminate the linear distortion by digital filters.
However, the more quantity of the elimination of the linear
distortion, results in the more quantity of the nonlinear
distortion. Therefore in order to make a high quality audio
system we need to eliminate both the linear and the non-
linear distortions at the same time. First, we have identi-
fied the loudspeaker system by the Volterra expansion
which expresses the relationship between input and output
signals, and then proposed the design method of the in-
verse system. The result of simulation shows that a de-
crease of the nonlinear distortion of about 100dB can be
obtained by using the design method proposed here.

1. Introduction
The loudspeaker is a very complex system which con-

verts an electric signal into the mechanical vibration and
outputs the acoustic signal. However, distortions occur in
the generates signal because the structure is complex.
When the system doesn't satisfy the distortionless condi-
tion, we call that the system has 'linear distortion'. When
the output waveform is not proportional to its input wave-
form, we call that the system has ‘nonlinear distortion’. A
nonlinear distortion can be classified further: A case where
a single sinusoidal wave input produces higher harmonics
at its output; and a case where two sinusoidal waves inputs
produce an intermodulation components (one having the
sum of frequencies of the two inputs, and another one
having the difference of frequencies of the two inputs) .

Up to now, the studies on elimination methods of the
linear distortion by the linear digital signal processing
have been done as a method of making high quality of
loudspeaker system [1]. However, the nonlinear distortion
increases with eliminating the linear distortion. Therefore,
to make high quality of the loudspeaker system, it is neces-
sary to eliminate not only the linear distortion but also the
nonlinear distortion at the same time. Recently, the Volter-
ra series expansion [2] has been applied successfully to the
analysis, design and identify of nonlinear systems [3-9]. In
[7-9], nonlinear distortions in loudspeakers are reduced
using Volterra filter. The design schemes of [7-9] are

based on the time domain approach. In this paper, we pro-
pose the method eliminating a nonlinear distortion with
the Volterra filter [10],[11]. In this method, the loudspeak-
er system is identified by using various characteristics of
the Volterra series in the frequency domain. The proposed
method is applied to an actual loudspeaker system. As a
result, we clarify to be unable to disregard the nonlinear
output compared with the linear output in a low frequency
region. Therefore, it is understood that the nonlinear dis-
tortion elimination of the loudspeaker system is important.
In addition, we propose the design method of the Volterra
filter which eliminates linear and nonlinear distortions at
the same time. It is shown that the output level of a non-
linear distortion can be decreased by about 100dB by this
method.

2. The Volterra Series Expansion
Now, a discrete -time, time-invariant, and causal

nonlinear system with memory can be expressed by means
of an extension of the following Volterra series expansion
[2].
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where x(n) and y(n) represent the input and output signals
respectively and h1(k1) and h2(k1,k2) are the first- and sec-
ond-order Volterra kernels of the system respectively. The
M points discrete Fourier transform (DFT) of eq. (1) is
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where X(m), Y(m), H1(m), and H2(m1,m2) are the M points
DFTs of x(n), y(n), h1(k1), and h2(k1,k2) respectively. In (2),
H1(m) and H2(m1,m2) will be called the first- and second-
order Volterra frequency response (VFR) for convenience
in this paper and A1 is called the first-order reduction op-
erator and maps the function with the two-dimensional de-
pendent variables to that with the one-dimensional one.



3. The First-Order Reduction
The first-order reduction operator maps the function

with the two-dimensional dependent variables to that with
the one-dimensional one as
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where Y2(m) and Y2
’(m1,m2) are the functions with one-

and two-dimensional dependent variables, and r=0,1. Fig.
1 shows the state of first-order reduction.

It is found from Fig. 1 that the second-order output
Y2(p) at frequency p is obtained by summing up the values
of Y2

’(m1,m2) for m1+m2=p+r·M, r=0,1. It is also found
from Fig.1 that the conventional sampling theorem cannot
be applied because the maximum frequency of the output
become more than 2ωmax (which is the maximum frequen-
cy of the input). Consequently, the Volterra sampling theo-
rem is applied in this case.
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Fig. 1 The concept of first-order reduction

4. The Volterra Sampling Theorem
The Volterra sampling theorem is defined as,

“The input signal x(n) or/and the second-order Volterra
kernel h2(k1,k2) must be limited to frequency band whi-
ch is less than quarter the sampling frequency.”

When the signal x which is a bandlimited signal with
maximum frequency component ωmax is input the system
defined as Eq.(2), the bandlimited second-order nonlinear
signal with maximum frequency component 2ωmax is out-
put. If ωmax and the maximum frequency of second-order
Volterra kernel are over π/2, the maximum frequency of
output signal become over π and the output contains
aliasing components. Therefore, the input signal and/or
the second-order Volterra kernel must be bandlimited with

less π/2.

5. The Needed Area of VFR
Let us consider some properties of the second-order

VFR. The minimum area needed to complete the second-
order VFR can be derived from some properties of the sec-
ond-order VFR. We explain each needed area derived from
each property of the second-order VFR in order to derive
the minimum area.

First of all, from the property that the second-order
VFR is symmetric as shown in the following expression,
the second-order VFR needs the hatched area in Fig. 2 (a).
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Since the Volterra sampling theorem extended from the
conventional sampling theorem applies to the nonlinear
systems, the second-order VFR needs the hatched area in
Fig. 2 (b). Next, since the second-order Volterra kernel is
generally a real number, the second-order VFR is conju-
gate symmetric.
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Therefore, the second-order VFR needs the hatched area in
Fig. 2 (c). Finally, the hatched area in Fig. 2 (d) is needed
in order to complete the second-order VFR from the above
properties. Consequently, since the number of the proc-
essing points which need to model and design the second-
order VFR in practice decreases to M2/16 from Fig. 2 (d).
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Fig. 2 The needed area of H2 derived from the property of

VFR.



6. The Identification Method of VFR
The identification of the second-order VFR is per-

formed by using the following equation.
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where m1 and m2 are frequencies of an input signal. Con-
sequently, the identification of the nonlinear system is
achieved by calculating Eq. (5) for various sets of two fre-
quencies. However, the value of second-order VFR for
m1=2m2 cannot be obtained. This is because the frequenci-
es of the linear output for m2 and the nonlinear output for
m1-m2 are the same. To solve this problem, we decide the
value of second-order VFR for m1=2m2 by averaging the
values of the second-order VFR at the near frequencies.

Fig. 3 shows an automatic system measuring second-
order VFR of loudspeaker system by using the above theo-
rem. The computer generates two sinusoidal waves and
transmits those data to the FFT analyzer by GPIB standard.
LPF is used for smoothing the output waves of FFT ana-
lyzer. The output signal is transmitted to the A channel of
FFT analyzer and the audio amplifier. In addition, the out-
put signal of audio amplifier is transmitted to the loud-
speaker system. The output is transmitted to the B channel
of FFT analyzer through the microphone. The transfer
function between A and B channels is calculated and
transmitted to the computer. The computer controls the
above operation.

DC Power

Measuring Amp.

Microphone

Audio Amp.

Loudspeaker

Computer

FFT Analyzer

LPF

Fig. 3 Automatic measuring system of second-order VFR.

The practical result of identifying the second-order
VFR of a loudspeaker by the proposed method is shown in
Fig.4. In this figure, the points for m1=m2 show the sec-
ond-order harmonic distortion and the points for m1≠m2

shows the second-order intermodulation distortion. It is
found from Fig. 4 that the second-order nonlinear distorti-
on cannot be disregarded compared with the linear output
in a low frequency region.
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Fig. 4 The second-order distortion level of the loudspeaker
system.

7. The Design Method of the Nonlinear Inverse
System in the Frequency Domain
The nonlinear inverse system is arranged in the

former part of the unknown nonlinear system as shown in
Fig. 5. In Fig. 5, the first- and second-order Volterra filters,
H1 and H2, eliminate the linear and second-order nonlinear
distortion respectively. H1 and H2 are designed by the fol-
lowing procedures.

1) H1 is designed as the linear inverse system of D1. That
is, H1 is designed so that the amplitude and phase
characteristics can satisfy the condition of no distor-
tion;

2) H2 is designed that the second-order nonlinear output
signals from D2 and H1, and from D1 and H2 can be
canceled each other.

Source Cancel

Nonlinear Inverse SystemUnknown nonlinear system

H2

H1 D1

D2

Fig. 5 The block diagram of tandem connection of the
nonlinear inverse system and the unknown non-
linear system.

Here, we derive the designing method of H2 by considering
the flow of signals of procedure 2 in the frequency domain.
From the condition that two second-order nonlinear output
signals in Fig. 5 are canceled each other, the following
equation is derived.
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In addition, putting D1(m) on the right side in the reduc-
tion operator, and by removing the reduction operator we
obtain
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Finally, the following equation is derived from the rela-
tions that D1(m1+m2)=D1(m1)+D1(m2) and H1=D1

-1.
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Hence, we can design the second-order VFR of the non-
linear inverse system H2 by using eq. (8).

8. An Example and Result
We present an application example to a loudspeaker.

Fig. 6 shows the second-order Volterra filter designed by
proposed method. Next, to estimate whether the nonlinear
inverse system designed by the above procedures can
eliminate the second-order nonlinear distortion enough,
Fig. 7 shows the levels of the second-order nonlinear dis-
tortion in the system of Fig. 5. It is clear from comparison
between Fig. 4 and Fig. 7 that the second-order nonlinear
distortion is eliminated enough (the maximum elimination
level is about 100dB). Consequently, it is found that the
proposal design method of the nonlinear inverse system is
very effective to eliminate the linear and nonlinear distor-
tions.
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Fig. 6 The second-order Volterra filter designed by pro-
posed method.
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Fig. 7 The second-order distortion level of the tandem
connection system of the loudspeaker system and
the corresponding nonlinear inverse system.

9. Conclusion
This paper proposes the method identifying the sec-

ond-order VFR of loudspeaker system by using various
characteristics of the Volterra series, and clarifies the
characteristic of the second-order VFR. In addition, pro-
poses the method designing the Volterra filter which
eliminates the linear and nonlinear distortions at the same
time. An example shows that the proposed method can
eliminate linear distortions with reduction of the secondary
nonlinear distortion even by 100 dB. This shows that the
proposed method is effective.Further reduction of compu-
tation time of the identification method is subject to study
in the future.
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