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ABSTRACT

This contribution is a study of a method for identi�ca-
tion of nonlinear stochastic models. Models generating
electroencephalograms (EEG), based on neurophysio-
logical knowledge are studied, [1]. A model-based anal-
ysis of single evoked potentials is also suggested. The
main idea behind the identi�cation is to use an inverted
model, since no general predictor is available for non-
linear models. A maximum likelihood (ML) method is
used to estimate the structure and the parameters of
the model. To utilize a priori knowledge a 'grey-box'
approach is taken.

1. THE EEG GENERATING MODEL

A neurophysiologically-basedmodel, developed by Jan-
sen and Rit [1], is the basis for this project. The model
of a cortical column is simulating electrical brain activ-
ity. A set of nonlinear di�erential equations describes
the model as

_x(t) = f(x(t); �) + g(�)w(t) (1)

y(t) = h(x(t); �); (2)

where x(t) is a state vector, � is the parameter vec-
tor to be estimated and y(t) denotes the output. The
model input is represented by w(t) and is characterized
by a probability density function �w. In this case we
consider a zero mean gaussian process with unit vari-
ance. The parameters, mean m and standard deviation
� are included in the parameter vector and need to be
estimated.

The cortical column is modeled by a population of
main cells interacting via feedback branches, as shown
in Figure 1. Each branch is either direct or represented
by a transformation. This transformation, of an aver-
age pulse density into an average potential, may be
either excitatory he(t) or inhibitory hi(t). The excita-
tory transfer function, e.g., is described by

he(t) = 0; t < 0 (3)
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Figure 1: Detailed block diagram of the SISO system.

he(t) = Aate�at; t � 0 (4)

where A is included in � and a is considered to be
known. The direct connections are only a�ected by a
connectivity gain Ci. A sigmoid function described by

S[xi(t)] = 2e0=(1 + er(vo�xi(t))); (5)

causes the nonlinear behavior of the model. Only some
of the parameters in (5) are estimated while others are
treated as known. The output y(t) is the di�erence be-
tween the outputs of the excitatory and the inhibitory
transfer functions.

Both single input, single output (SISO) models and
multi-input, multi-output (MIMO) models are tested.
The tested MIMO model, shown in Figure 2, consists
of two coupled SISO models Si. The SISO models
are connected by an excitatory transfer function and a
connectivity gain. The MIMO model with two inputs
and two outputs is also used for exploring 
ash visual
evoked potentials (FVEPs). To simulate a FVEP a
pulse-like input component (PLIC), described by

P (t) = 0; t < t0 (6)
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Figure 2: Block diagram of the MIMO system. Si is a
SISO system described in Figure 1.

P (t) = q(
t� t0

�
)ne�

t�t0

� ; t � t0 (7)

represents the impulse density related to the visual in-
put, [1]. Only the parameter q, representing the am-
plitude, is estimated. The PLIC is added to one of the
inputs of the MIMO model.

2. IDENTIFICATION

'Grey-box' identi�cation utilizes a priori information
along with experimental data. The basic ideas for in-
teractive design and identi�cation of a stochastic model
are suggested in [2]. The procedure is based on se-
quences of testing of gradually re�ned model equations.
Hence, the procedure starts with a simple model which
is later expanded. In this study the following proce-
dure is used, [3], to achieve the simplest possible model
structure, not contradicted by data.

1. Initialization: A �rst 'root' model is constructed.
It is supposed to be as simple as possible. Initial
parameter values are also set.

2. Repeat while the model is falsi�ed:

(a) Specify a tentative free parameter set and
�t the free parameters. If no more free pa-
rameters are available, then expand the set
of equations.

(b) Test the model against a set of alternative
models.

(c) Evaluate the test statistics.

(d) Appraise the model, if any of the alterna-
tives is better, then falsify the model. Go
back to 2.(a) starting with the best of the
alternative models.

The above described procedure is not fully automated
and therefore needs a certain interaction by the user.
Such interaction involves the selection of alternative
models and how the initial parameter values are chosen.

The testing, under point 2.(b), is based on the like-
lihood of the model, parameterized by �, and that of
the alternative model, parameterized by �0. Here, the
likelihood of the parameter vector � is written as

L(� j y) = �y(y j � ); (8)

where �y is the conditional probability density function
(PDF) of y given the parameter vector �. As shown in
[4], �y can be computed as

�y(y j � ) = �w(W (y))

�
�
�
�

d[W (y)]

dy

�
�
�
�
: (9)

where �w is the PDF of w. In (9), W denotes the
inverse of the relation between the input and the out-
put. The minimization of the negative log likelihood
function

Q(�) = � logL(�jy) (10)

is performed for each iteration by a Levenberg Mar-
quardt algorithm.

The falsi�cation test, 2.(c), is based on the likeli-
hood ratio. The con�dence in a reject decision of the
model represented by � vs. an alternative model rep-
resented by �0 is


 = �2
r
[2Q(�̂)� 2Q(�̂0)]: (11)

In (10), �̂ and �̂0 minimizes the loss functions Q(�̂) and

Q(�̂0) respectively. If 
 > (1� the risk level), then the
model parameterized by � will be rejected. In (11), r
is the number of degrees of freedom, r = dim(�0) �
dim(�).

3. INVERTIBILITY

The criteria for invertibility are important and they can
be summarized in two points,

� The mapping from y to w has to be one-to-one
and onto. Hence, the number of noise inputs to
the model has to be the same as the number of
measured output signals.

� The mappings have to be di�erentiable.

In our case, with the model written as in (1), the cri-
teria for invertibility stated in, e.g., [5] can be used. If
the system is linearized at a point x0 then the system
equation can be written as

_x(t) = Ax(t) +Bw(t)

y(t) = Cx(t) (12)



where A is the linearization of f(x(t); �) computed as

A =
@f(x)

@x
jx=x0

: (13)

The system is invertible in the point, x = x0, if

V �

\ Im(B) = 0 (14)

where V � is the largest subspace of ker(C) satisfying

AV �

� V � + Im(B): (15)

The above criteria is a local test around the point x0.
The test of invertibility can therefore be applied as a
function which tests the invertibility \on line".

4. CONVERGENCE

We will only brie
y mention the main results of [6],
where the convergence of the ML estimator for an in-
vertible stochastic model was investigated. According
to Ljung [7], the identi�cation procedure is based on
three entities; the data record, the set of models and
the criterion.

Ljung lists three conditions on the data where we
will especially note the condition of exponential forget-
ting. This condition means that the remote past of
the process is forgotten at an exponential rate. Hence,
\good" approximations of y(t) can be made that are
independent of the past.

The inverted model is similar to the probabilistic
model de�ned by Ljung [7] (p. 185), although, here,
w(t) is computed by the inversed model instead of a
prediction model. According to Ljung, the model has
to be restricted in two ways. First, the rate at which the
inverse transformation W may increase with y has to
be restricted. Also, the model and its derivatives with
respect to � have to be exponentially stable. It should
be noted that these conditions concern the model, not
the data, and it is our model.

It is shown in [6] that the ML estimator will con-
verge to a parameter set where the likelihood function
is maximal. Also, for the special case when the model
set contains the \true model" the estimator will con-
verge to a set containing the true model.

5. ANALYSIS OF SINGLE EVOKED

POTENTIALS

We suggest a model based method for analyzing sin-
gle FVEP. First, the model parameters are estimated
on both pre- and poststimulus data, including the pa-
rameters describing the properties of the PLIC. There-
after, the model is simulated both with and without
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Figure 3: Schematic for the estimation of a single

FVEP.

the PLIC and the resulting outputs are compared. In
Figure 3, a block diagram is shown where the measured
signal, y(t), is used to estimate the parameters of the
inversed model , Ŵ , and the PLIC, P (t). Thereafter,
P (t) is subtracted from the noise sequence and the es-
timated model M̂ is simulated using the 'new' noise
sequence. The single FVEP is computed as the di�er-
ence between the two signals. Here, we assume that the
ongoing activity is una�ected by the evoked potential
(EP). This assumption combined with the assumption
that the EP remains the same from trial to trial are
used by traditional methods. Methods, analysing EPs,
based on averaging a large number of trials. Although,
our assumption is somewhat contradicted by the use
of a nonlinear model, it will make comparisons with
traditional methods possible.

6. IDENTIFICATION RESULTS

The identi�cation algorithm is tested on sequences of
two seconds of simulated data. The sampling frequency
is 500 Hz, hence, there is 1000 samples in each se-
quence. The parameter vector used for the simulation
will be denoted �0 and the estimated vector �̂. Both a
SISO model and a MIMO model are tested. The latter
also under generation of 
ash visual evoked potentials
(FVEPs). In the case of FVEP the amplitude of the
pulse-like component, is estimated.

We will start by showing the detailed results of
the identi�cation procedure for a SISO model. Since
the procedure is similar for the more complex MIMO
model, only the main parts of the results will be pre-
sented. Finally, the results from the estimation of the
FVEP amplitude will be shown along with the usage
of the analysis scheme suggested in Section 5.

The risk level, described in Section 2, is set to 5%.
Hence, if 
 is larger than 95 % the model will be re-
jected.

A SISO case

As pointed out in Section 2, a 'root' model has to be
speci�ed by the user to begin with. The root model
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Figure 4: Validation for the SISO model. The solid line
corresponds to �0 and the dashed line to �̂.

in our case only consisted of the noise model and the
�rst �lter he(t). To begin with, three parameters were
freed, the parameters representing the mean and the
variance of the noise and the parameter A, charac-
terizing the gain of he(t), see (3). The results from
the parameter estimation is shown in Table 1 as trial
1. All the C parameters were kept equal to zero and
the resulting negative logarithm of the likelihood, Q,
is �2028. It should be noted that the value of Q is
only valid for comparisons made on the same data se-
quence. To expand the model structure the inhibitory
feedback branch was tested. Three more parameters
were freed; C3, C4, and v0 (included in the sigmoid
function). Actually, there is another parameter, repre-
senting the gain of hi(t), but it is included C4. When
freeing the three parameters the value of Q decreased
by 223 which is a signi�cant reduction. Further ex-
pansion of the model structure involved the excitatory
feedback parameterized by C1 and C2. As shown in
Table 1, trial 3, the Q value dropped by 9 to �2260.
Finally, the hypothesis of the direct feedback branch
parameterized by C6 was tested and found signi�cant
since the loss reduction was 81. The parameter vector
used for simulating data is presented as �0 in Table 1.

Four sequences of data, simulated with �0 but with
di�erent noise realizations, were used to test the pa-
rameter variation. The parameter estimates of v0, A,
and � were close to their actual values. However, the
values of the connectivity parameters Ci and the mean
of the noise, m, varied depending on the initialization.
Di�erent combinations of Ci and m gave almost the
same value of Q. To validate these results, the model
was simulated with another noise sequence using �0 and
�̂. An example of a simulation for validation using �̂

from trial 4 in Table 1 is shown in Figure 4. This is a
test that can only be made on simulated data, however,
it suggests that the parameterization is non unique.

A MIMO case

The MIMOmodel consists of two SISOmodels, coupled
by two excitatory branches as shown in Figure 2. The

Table 1: An example of the parameter estimates and

the model expansion in a SISO case.

Trial v0 A m � Q �Q

1 - 3.32 240 59 -2028 -

2 6.4 5.8 263 29 -2251 223

3 5.9 3.1 289 40 -2260 9

4 5.8 2.7 291 53 -2341 81

�0 6.0 2.6 220 57

Trial C1 C2 C3 C4 C6

1 - - - - -

2 - - 20 13 -

3 90 110 25 42 -

4 114 82 27 36 24

�0 125 100 31 32 20

Table 2: An example of the parameter estimates for a

MIMO case.

v01 A1 m1 �1 K1

�S1 6.0 3.6 220 58 300

�̂S1 6.3 5.1 360 40 325

C11 C12 C13 C14 C16

�S1 108 86 27 27 10

�̂S1 47 17 20 25 4

v02 A2 m2 �2 K2

�S2 5.0 2.6 220 58 400

�̂S2 5.3 2.2 341 67 412

C21 C22 C23 C24 C26

�S2 108 86 27 27 0

�̂S2 134 93 31 38 0

connectivity parametersK1 and K2 determines the de-
gree of coupling. As long as K1 and K2 are kept equal
to zero, the model can be considered as two separate
SISO models.

An example of the estimation results are shown in
Table 2. As shown, the parameter values di�ered con-
siderably from their actual values in this case. How-
ever, in Figure 5, the results from a simulation using a
new input realization is shown, and the result is con-
sidered to be satisfying.

Four di�erent realizations were tested and the re-
sults were compared. The estimated values of the C

parameters and m varied, and di�ered from their ac-
tual values. On the other hand, the simulations with
a new input realizations gave satisfying results. We
therefore conclude that there is a non unique parame-
terization of the model.
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Figure 5: Validation for the MIMO model. The solid
line corresponds to �0 and the dashed line to �̂.
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Figure 6: Estimated single FVEP. Top: the signal in-
cluding the FVEP. Middle: FVEP excluded. Bottom:
The di�erence between the top and the middle.

FVEP

The MIMO system estimated in the previous section
was also stimulated by a PLIC, described in Section 1.
The amplitude of the pulse, q = 0:1, was estimated and
the scheme for estimating the single 
ash visual evoked
potential (FVEP) was used. The amplitude parameter
was freed last and the whole data sequence of data was
used. In other words, both pre- and poststimulus data
was used. The parameter estimates varied between 0.08
and 0.13, and was found signi�cant in all cases.

In Figure 6, the results are shown from the estima-
tion of a single FVEP. On top, is the simulated signal
including the FVEP. Next is the simulated signal ex-
cluding the FVEP. At the bottom the di�erence and,
hence, the suggested single FVEP is shown.

Summary

The correct model structure was estimated in all the
tested cases. However, the estimated parameter val-
ues varied. Since the model shows di�erent behavior
for di�erent parameter vectors it is hard to generalize
the results to include all parameter combinations. The
results should, therefore, be seen as examples.

In all the presented cases, the initial conditions (IC)
have been treated as known. There are, however, other
ways of treating the ICs. One way is to estimate them,
hence add the ICs to the parameter vector. The dis-
advantage of doing that would be that the number of
parameters to be estimated would almost double. An-
other way would be to use the property of exponential
forgetting (see Section 4), by this assumption the �rst
samples of the inverted signal should not be included
in the computation of the likelihood function.

7. CONCLUSIONS

An identi�cation procedure for nonlinear stochastic
models, based on a priori information, is presented.
The main idea behind the algorithm is to use an in-
verted model and an ML estimation method of the pa-
rameters. A case-study is performed on a nonlinear
EEG generating model. The proposed method is only
tested on simulated data so far. However, the results
show that the method can be used for the validation of
the ideas behind the models. Thus, the method may
provide a tool for improved analysis of EEG.

8. REFERENCES

[1] B.H. Jansen and V.G. Rit. Electroencephalogram and
visual evoked potential generation in a mathematical
model of coupled cortical columns. Biological Cybernet-
ics, 73:357{66, February 1995.

[2] T. Bohlin. Interactive System Identi�cation: Prospects

and Pitfalls. Springer-Verlag, 1991.

[3] T. Bohlin. Derivation of a `designer's guide' for interac-
tive `grey-box' identi�cation of nonlinear stochastic ob-
jects. International Journal of Control, 59:1505{1524,
1994.

[4] A.H. Jazwinski. Stochastic Processes and Filtering The-

ory. Academic Press, 1970.

[5] A. Isidori. Nonlinear Control Systems. Springer, 3rd
edition, 1995.

[6] B. Liao. Convergence and Consistency in Maximum
Likelihood Identi�cation of Nonlinear Systems, Report

TRITA-REG 8908. Royal Institute of Technology, Swe-
den, 1989.

[7] L. Ljung. System Identi�cation, Theory for the user.
Prentice-Hall, 1987.


