
HARDWARE IMPLEMENTATION OF A NONLINEAR PARAMETER ESTIMATOR
FOR PROCESS MONITORING

Uwe Marschner and Wolf-Joachim Fischer

Dresden University of Technology,
Semiconductor and Microsystems Technology Laboratory

Mommsenstraße 13, 01062 Dresden, Germany
email: marschne@ehmws1.et.tu-dresden.de

ABSTRACT

In this paper the mapping of a nonlinear parame-
ter estimator onto a DSP-architecture under use of
an Electronic Design Automation (EDA) tool is pre-
sented. The work concentrates on the implementa-
tion of static nonlinear process models with SISO-
structure and block processing. It is shown that the
synthesized processor is able to perform such a pa-
rameter estimation in less than 30 �s at a reason-
able chip size.

1. INTRODUCTION

In control engineering the monitoring of technical
processes by parameter estimation methods has been
recommended [1], [2]. It can increase the precision,
resolution and the stability from a statistical point
of view, allows the observation of process quantities
which are not directly measurable and small faults
of the process operation can be detected at early
stages.

One problem is the high computational power re-
quired by this method. In order to monitor a com-
plex technical system, for example a power plant,
the signals measured at each subprocess should be
processed separately. One possibility is the usage
of industrial PC's or DSP-Boards but they are rela-
tively expensive and heavy to protect against envi-
ronmental influences.

In this paper the design, simulation and appli-
cation of a Parameter Estimation Processor (PEP)
is presented. The on-chip combination of this Func-
tion and Application Specific Integrated Circuit (FA-
SIC) together with a sensor creates a microsystem
which can be located close to the process and com-
press the information obtained by the measured sig-
nals.

The algorithm is written in Data Flow Language

(DFL), a Mentor Graphics version of Silage language
from UC Berkeley.

2. ON-LINE PARAMETER ESTIMATION

Fig. 1 shows the underlying scheme for paramet-
ric system identification by output error correction
with initial point adjustment.
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Figure 1: On-line parameter estimation with initial
point adjustment

The input variables xN = (x(1); x(2); ::; x(N)) in
<
N and output variables yN = (y(1); y(2); ::; y(N)) in

<
N of the process are measured simultaneously at

equidistant sampling intervals and stored to block
size N in the vectors x and y during a process op-
eration cycle, for example when a valve is closed.
Every previous measured block is deleted or forgot-
ten. The parameters are viewed as quasi constant
or time invariant during block measurement.

2.1. Model and Criterion Function Calculation

The process is described by the static nonlinear func-
tion f between the arguments x and the results ŷ by



using parameters �

f : X��! Y; ŷ = f(x; �)

� 2 � � <
M; x 2 X; ŷ 2 Y � <

N
(1)

or

ŷ1 = f(x1; �)

:

:

ŷN = f(xN ; �)

(2)

The above mentioned information compression as-
pect is thereby described by the mapping of the mea-
surement space into the parameter space.

It is assumed that the model is physical-based
and includes the fault cases, thereby the faults have
unique features, i.e. the characteristic curves are
independent of each other. The model is already ver-
ified by real measurements and the fault cases can
be related to one parameter or a tuple of parame-
ters, i.e. the model is sensitive in these parameters.

At this stage a quadratic criterion function is cal-
culated. A more robust function w.r.t. the measure-
ment disturbances like a Huber function [3] could
be implemented but has not been necessary for the
investigated examples. In this content it is assumed
that the minimization reaches only the (desired) min-
imum which is located together with the initializa-
tion point in the same basin of attraction.

This assumption requires the initialization of the
first parameter estimation at a known process oper-
ation case, usually the normal operation case. The
parameter estimation scheme will hold for such “slow”
parameter changes that the model still fits the ob-
servations at reasonable criterion function values.

2.2. Multidimensional Minimization Algorithm

Iterative numerical minimization algorithms can be
divided into groups depending on the usage of the
function value, its gradient and its Hessian [4].

A comparison of the implementation of the sim-
plex method and the Gradient and Hessian calculat-
ing Sequential Quadratic Programming (SQP) algo-
rithm showed that the simplex method is suitable
for the implementation in an microsystem for the
intended usage. The main reason is the 7 times
smaller chip size [5].

The simplex algorithm requires only M +1 func-
tion evaluations in M parameter dimensions which
form a geometric figure in the parameter space [6]
and is known as slow but robust [7]. The simplex
is able to reflect, to reflect and expand, to contract

along one dimension and also to contract along all
dimensions and so to reach the minimum.

Together with a moving parameter trend anal-
ysis which is used to predict the next minimization
initial point the number of iterations can be decreased
strongly compared to an unknown initial point.

2.3. Moving Trend Analysis

The moving trend analysis is based on a second or-
der polynomial:

�m(k) = K0 +K1 � u(k) +K2 � u(k)
2 (3)

where K0 is constant at the k-th parameter estima-
tion. This function should be sufficient for the de-
scription of the assumed slow parameter drift.

The LS-estimation of the linear parameters K1

and K2 is done by generalized correlation functions
as described in [8]. The next initial point is pre-
dicted by an extrapolation of the polynomial. The
implemented trend analysis uses the parameters from
the last six estimations.

2.4. Parameter Estimation viewed as Discrete
Time System

In order to use the automatic scheduling capabili-
ties of the EDA-tool (see section 4) the parameter
estimation scheme had been rewritten as discrete
time system (Fig. 2). Here � is the parameter vec-
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Figure 2: Discrete time system

tor, k the discrete time variable and Q a map of the
parameter space into itself.

Globally spoken one can think on a direction up-
date at one iteration step depending on the criterion
function value. The result of the behavioural simu-
lation of the parameters generated by this system is
shown in Fig. 7.



3. EXAMPLE PROCESSES

The characteristic function of a process which can
be described by static nonlinear model is shown in
Fig. 3. Here the potential and the electrical current
of a microplating process are measured and among
others the concentration of the electrolyte is esti-
mated [9].
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Figure 3: Microplating process with 5 parameters

A second example is the monitoring of a Motor-
Operated Valve (MOV) using the relation between
the stem position and the operator torque [10]. The
characteristic curve shown in Fig. 4 is represented
by a constant normal operation vector influenced
among others by a function representing several on-
going faults, for example a high stem friction due to
a poor lubrication. The model is still under investi-
gation.
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Figure 4: Model-based diagnosis of a motor-
operated valve with 6 parameters

The microsystem including the PEP is intended
to be fixed very close to a process and so to concen-
trate computational power locally.

4. DSP ARCHITECTURE

The presented PEP is designed as core. To complete
the microsystem at least a sensor and an A/D con-
verter have to be added (Fig. 5). The reliability of
the data transfer should be increased by a field bus
interface, for example the CAN-bus interface.
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Figure 5: Microsystem parts

Design data for the A/D-converter and the CAN-
bus controller are available when a single chip mi-
crosystem is desired as well as chips for each unit so
that only the architecture of the PEP is explained.

The implementation of the parameter estimation
scheme has been done under use of the MISTRAL2
synthesis tool by Mentor Graphics which is suited
for third-generation DSP-algorithms. These DSPs
are designed for the application of complex decision
making algorithms to large blocks of sampled data.

The size and speed estimation for the bitparallel
PEP were performed at logic level by MISTRAL2
whereas the scheme was defined at the algorithmic
level. At the register transfer level a description
of the processor architecture in terms of execution
units (EXUs) and interconnections is available as
well as the description of the processor controller.
At present the EXUs shown in Fig. 6 are used.

Thereby the sampled data are read from the In-
put RAM (ipb 1) and processed by the Arithmetic
Logic Unit (alu 1) and the Multiplier (mult 1). To
the background RAM (ram 1) belong data input reg-
ister files, address input register files and other reg-
isters. The foreground ROM (romctrl 1) is used for
constant signals with compile-time constant address.
Address computation and loop counting are performed
by the Address Computation Unit (acu 1). Finally
the output signals are stored in the Output RAM
(opb 1). The controller of the processor is microcode-
based and of multi-branch type.



Figure 6: EXUs of the PEP

5. BEHAVIOURAL SIMULATION AND
IMPLEMENTATION RESULTS

In Fig. 7 the results of a behavioural simulation
of three parameters during an estimation are de-
picted. Since the geometric vertices of the first sim-
plex are calculated serially one can observe the ini-
tial simplex during the first three steps. The initial-
ization is followed by a reflection and then a con-
traction. Close to the minimum the simplex con-
tracts further so that the parameter “signal ampli-
tude” decreases. When the termination tolerance is
matched the estimation stops.

In Fig. 8 the results of a timing analysis are pre-
sented. After the trend analysis the simplex mod-
ule is activated delivering a parameter tuple which
serves as input for the model and criterion func-
tion calculation. After M+1 iteration steps the first
simplex is calculated and evaluated by the simplex
module and the next iteration cycle starts.

For the simulation of a trend analysis of a pa-
rameter drift shown in Fig. 9 the parameters of the
last six estimations are used.

Assuming 40 iteration cycles the total parameter
estimation time amounts to 26:2�s for the example
process shown in Fig. 4.

The area of the PEP containing the simplex al-
gorithm was determined to 87000 gate equivalents.
That can be called ”normal” for a DSP and can cer-
tainly further improved by accuracy investigations
and architectural optimizations.
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Figure 7: Parameter “signals”
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Figure 8: Timing analysis of the simplex-PEP
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Figure 9: Trend analysis by second order polyno-
mial

Figure 10: Layout of the simplex-PEP

6. CONCLUSION

The practical investigations presented in this pa-
per show that it is possible to design a DSP suit-
able for nonlinear parameter estimation at reason-
able costs (chip size). The implementation of a usu-
ally as slow known gradient free method combined
with a parameter trend analysis to predict the next
initial point allows the repetition of the parameter
estimation approximately every 30�s for the given
example, i.e. the process parameters might change
within this dynamic.
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