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ABSTRACT

Two alternative neural-network methods are presented

which both extract independent source signals one-by-

one from a linear mixture of sources when the num-

ber of mixed signals is equal to or larger than the

number of sources. Both methods exploit the previ-

ously extracted source signals as a priori knowledge so

as to prevent the same signals from being extracted

several times. One method employs a deation tech-

nique which eliminates from the mixture the already

extracted signals and another uses a hierarchical neu-

ral network which avoids duplicate extraction of source

signals by inhibitory synapses between units. Exten-

sive computer simulations con�rm the validity and high

performance of our methods.

1. INTRODUCTION

Blind source separation can be formulated as the task

to recover the unknown sources from the sensor signals

described by x(t) = As(t); where x(t) is an n � 1

sensor vector, s(t) is an m � 1 unknown source vector

having independent and zero-mean signals, and A is an

n � m unknown full-rank mixing matrix.

By assuming that the number of sources is known

and usually equal to the number of sensors, most of the

algorithms in the literature can e�ciently perform sep-

aration of the source signals in a fully parallel manner

[2-5,8,10,13,15]. In practise, the number of sources is

unknown and can change rapidly in time, and is usu-

ally smaller than the number of sensors, i.e., m � n [7].

One possible solution for practical cases is to extract

source signals sequentially (one-by-one) [6,9-12,18,19].

This solution requires use of two techniques: one for

extracting a single source signal form the mixture and
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another for preventing duplicate extraction of the same

sources by next processing units.

To extract a single source signal, methods for blind

equalization or deconvolution problems [17] can be used,

as done in [6,9,11,12,14,18,19]. Namely, extraction of

an independent source signal can be achieved by maxi-

mizing (and/or minimizing) the fourth order cumulants

�4(y1) subject to certain constraints. To prevent du-

plicate extraction, an adaption of the orthogonal Schur

eigenvalue deation technique was used in [9]. This

technique is, however, not suited for on-line, real-time

applications due to its rather high complexity. In [11],

the hierarchical orthogonalization technique [16] was

used. However, it is rather di�cult to choose proper

values for the coe�cients corresponding to the orthog-

onalizing feedback terms, unless a priori knowledge of

the kurtosis of sources signals is known.

In this paper, we present two alternative neural-

network methods for extracting source signals on-line

when m � n. One method (in Section 2) employs a de-

ation technique for eliminating from the mixture the

already extracted signals while another method (in Sec-

tion 3) uses a hierarchical neural network which avoids

duplicate extraction of the source signals by inhibitory

synapses between units. One salient feature of these

methods is that they can extract �rst the most \in-

teresting" signals, those most deviated from Gaussian

signals. In addition, the learning adaptive algorithms

in use are purely local, biological plausible and often

simpler than algorithms for blind signal separation.

2. ON-LINE EXTRACTION AND

DEFLATION LEARNING ALGORITHMS

Let us consider a single processing unit (see Fig. 1.a)

y1 = wT
1 x1 =

Pn

j=1 w1jx1j , where x1 = [x11; x12; . . . ;

x1n]
T is either the mixing signals x = As or the pre-

whitened version of x. Prewhitening or decorrelation
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Figure 1: The architectures of the extraction-deation

neural network (a) and the hierarchical neural network

(b).

of x so that Rx1x1 = I [1,19] improves the recovering

performance for the cases where mixing matrixes A

are ill-conditioned or where additive noises exist at the

sensors. The unit successfully extracts a source signal

if w1(t) = w1� satisfy the relation wT
1�A = ek, where

ek denotes the k-th column of the n � n identity matrix

I.

A possible loss (contrast) function can be formu-

lated as [18]:

J1(w1) = �
1

4
j�4(y1)j; (1)

where �4(y1) is normalized kurtosis de�ned as �4(y1) =

E

�
y
4
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�
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� � 3. Minimization of the loss function (1) leads

to a simple learning rule:

dw1

dt
= ��1(t)f1(y1(t))x1(t); (2)

or

w1(t+ 1) = w1(t)� �1(t)f1(y1(t))x1(t);

where �1(t) > 0 is a learning rate and f
�
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def
= E

�
jy1(t)j

p
�
; p = 2; 4. The high order mo-

ments m2;m4 and the sign of kurtosis �4 can be esti-

mated on-line using the following averaging formula:

dmp(yk)

dt
= �

�
�mp

�
yk(t)

�
+ jyk(t)j

p
�
: (3)

After successful extraction of the �rst source signal

y1(t) � sj(t) (j 2 f1; . . . ; ng) , we can apply a deation

procedure which removes previously extracted signals

from the mixture. This means that we are looking for

such an on-line linear transformation given by (see Fig.

1.a)

xk+1(t) = xk(t)� ewk(t)yk(t) k = 1; 2; . . . (4)

which ensures minimization of the generalized energy

(loss) function

eJk(ewk) =
1

2
kxk+1k

2
; (5)

where yk = w
T
k xk,

dwk

dt
= ��k(t)fk(yk(t))xk(t); (6)

and fk
�
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= sign
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� . The last term m4=m
3
2 can be absorbed by

learning rate �k(t) since it is always positive. Mini-

mization of the above de�ned loss function leads to a

simple learning rule:

dewk

dt
= e�k(t)yk(t)xk+1(t) k = 1; 2; . . . : (7)

The procedure can be continued until all of the esti-

mated source signals are recovered, i.e., until the am-

plitude of each signal xk+1;i is below a given threshold.

This means that it is not necessary to know the number

of source signals in advance.



3. HIERARCHICAL NEURAL NETWORK

Another method di�erent from the deation procedure

described above is to use a hierarchical neural network

as shown in Fig. 1.b. The neural model is described

by a simple set of equations:

yk =
Xn

j=1
wkj(t)x1j + c(t)

Xk�1

i=1
ewkiyi

= wT
k x1 + c(t)ewT

k y; (8)

where ewk =
� ewk;1; ewk;2; . . . ; ewk;k�1; 0; . . . ; 0

�T
, y =�

y1; y2; . . . ; yn
�T
, and c(t) is a scaling factor. As done

in the previous section, for extraction of a single source

signal we employ the following loss (cost) function:

Jk(wk) = �
1

4
j�4(yk)j: (9)

Here, however, to ensure that the extracted signal yk
is di�erent from the previously extracted signals yj,

where j < k, we introduce an additional loss function:

eJk(wk; ewk) = �

k�1X
j=1

�
E
�
yj(t)yk(t)

��2
; (10)

where � > 0 is a penalty parameter. This loss function

contributes non-zero penalties when the outputs of the

jth and kth units, i.e., yj and yk, are correlated.

Applying a standard stochastic gradient descent pro-

cedure to (9)+(10), we obtain on-line local adaptive

learning rules:

dwk

dt
= ��k(t)fk(yk(t))x1(t) (11)

where �k > 0, and

fk
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= sign
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rkj(t)yj(t) (12)

with rkj(t)
def
= E

�
yk(t)yj(t)

�
. As with mp, the corre-

lation rkj can be estimated on-line using the following

averaging formula:

drkj

dt
= �

�
�rkj + yk(t)yj(t)

�
: (13)

The role of the lateral synaptic weights ewkj is de-

voted to preventing the previously extracted signals yj,

where j < k, from being redundantly extracted. The

learning rule is, therefore, derived by applying a stan-

dard gradient descent procedure to (10). The resulting

learning rule is as follows.

d ewkj

dt
= �e�k(t)

�
rkj(t)yk(t)yj(t)+�h

� ewkj

��
(j < k)

(14)

where e�k and � > 0, and h(w) is a non-linear odd

function, such as h(w) = jwjpsign(w); p = 1; 3; 5; . . .

The weight decay term �h
� ewkj

�
plays a role of a for-

getting term, namely, it forces to zero those weights

not receiving su�cient reinforcement.

4. COMPUTER SIMULATIONS

We con�rmed the validity and performance of our meth-

ods using extensive computer simulations for a variety

of problems.

Below, due to limit of space, we only present an

illustrative example of typical results from the hierar-

chical neural network method experimented with three

binary 512�512 images. These results were obtained

when we initialized all the weights such that they had

random values in the range -0.1 and 0.1, used the �xed

learning rates of 0.001, and started the kth extraction

unit at time (k � 1)2500. Five linear mixtures of the

images were generated by multiplying the source signal

vector with the randomly chosen mixing matrix A =
0
BBBB@

�0:9846 �0:8609 0:4024

�0:2332 0:6923 0:8206

�0:4557 0:0539 0:4239

�0:1650 �0:8161 �0:8751

0:6735 0:8078 �0:9051

1
CCCCA
:

Fig. 2 shows the original images, the mixed images

and the extracted images in (a), (b) and (c), respec-

tively. Visual comparison of Figs. 2.a and 2.c con�rms

that the source signals were successfully extracted, but

subject to un-determinacy of the order and the sign of

extracted signals.

We note here that the number of active sources in

the mixed signals was not known to the system. In the

above experiment, at the 4th extraction unit, the corre-

lation between the outputs of the 2nd and 4th units was

high, e.g., r42(10000) = -0.8290, and never converged

to zero. This implied that all of the active sources had

been successfully extracted by the �rst three extraction

units. We could, therefore, terminate the extraction

process and discard the result at the 4th unit.

5. CONCLUSIONS

Wehave presented two alternative neural-networkmeth-

ods for on-line blind signal extraction. Our approach



has the following features: It uses a simple cost func-

tion (absolute value of normalized kurtosis) without

any constraints. From this cost function, simple adap-

tive nonlinear functions are derived. These nonlinear

functions change their shapes during the learning pro-

cess. Moreover, the proposed algorithms are able to

extract signals both sub-Gaussian and super-Gaussian.

The developed learning algorithms are purely local and

are biologically plausible; they could be considered as

a generalization or extension of Hebbian/anti-Hebbian

rules. The proposed methodology can be extended to

multi-channel blind signal deconvolution or generalized

to complex-valued signals.
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(a) Original Images (b) Mixed Images (c) Extracted Images

Figure 2: Typical results of extraction of three binary 512�512 images received at �ve sensors.


