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ABSTRACT

A new multiresolution decomposition scheme based on
constrained B-Spline decimation/interpolation is pro-
posed. The proposed decomposition algorithm is tested
on greyscale and color image compression, and the re-
sults are compared with DCT based compression. Dither-
ing and postprocessing are applied to the compressed
images to deal with artifacts at low bit rate compres-
sion.

1. INTRODUCTION

Multiresolution decomposition refers to analyzing an
image at di�erent resolution levels. Development of
Laplacian Pyramidal image compression algorithm by
Burt and Andelson [1], accelerated the improvement of
multiresolution analysis based image compression tech-
niques. Unser et al compared cubic spline pyramid with
Laplacian pyramid in [2], and found out that cubic
spline pyramid constructed by successive least squares
spline decimations leads to a better preserving of de-
tails in each multiresolution level. In this work, a novel
multiresolution decomposition structure is developed
by a set of constrained least squares spline approxima-
tions. Each resolution level is represented by B-Spline
functions and corresponding coe�cients which are used
as transform coe�cients. The number of B-Spline co-
e�cients representing each decomposition level are re-
duced by introducing orthogonality constraints. The
proposed decomposition structure is used in a coding
algorithm which is applied to low bit rate greyscale
and color image compression. In case of greyscale im-
age compression, the proposed algorithm is combined
with transform domain dithering for removing artifacts
caused by the lossy compression around edges.

2. LEAST SQUARES B-SPLINE

DECIMATION

Consider a space S spanned by cubic cardinal basis-
spline functions. Any function f(x) of S can be written
as

f(x) =

1X
j=�1

�(x � j)pj ; (1)

where pj are the spline coe�cients and �(x) is the cubic
B-Spline function which has a �nite support from �2
to 2 [3]. f(x) is is de�ned to be the best approximation
from S to a function z(x) in L2 sense if,

8f(x) 2 S; < f(x); z(x)� f(x) >= 0; (2)

where < : > is the inner product operator.

Let z0 = [z1; z2; : : : ; zN ]
T be an N -long data vec-

tor corresponding to data at (x1; : : : ; xN ). Best ap-
proximation of z0 from S with M spline coe�cients
p1 = [p1; : : : ; pM ]T can be obtained by using equations
(1-2),

p1 = (BT
1
B1)

�1BT
1
z0; ẑ0 = B1p1; (3)

where

ẑ0 = [ẑ(x1) : : : ẑ(xN )]
T ; ẑ(xi) 2 S; (4)

B1 =

2
64

�(x1 � l + 1) : : : �(x1 � l +M )
...

...
�(xN � l + 1) : : : �(xN � l +M )

3
75 ; (5)

B1 is the N �M matrix of basis spline functions and
p1 is the M � 1 vector of spline coe�cients. A dec-
imation matrix B1;s can be obtained by taking every
N=M 'th row of B1 and discarding the others. Hence,
least squares decimation follows,

z1 = B1;sp1: (6)



3. B-SPLINE MULTIRESOLUTION

DECOMPOSITION

Consider the problem of decomposing z0 into m + 1
di�erent levels of resolution. Let ẑ0 given by equation
(3) be the coarsest resolution level. It can be uniquely
represented by a set of spline functions and M -long
coe�cient vector p1 (see equation (3)), where M =
N=2m. Let d1 be the 1'st scale di�erence vector which
is expressed as,

d1 = z0 � ẑ0 = (IN �B1(B
T
1
B1)

�1BT
1
)z0 (7)

where IN is the identity matrix of size N�N . A higher
resolution level representation for z0 can be obtained
by adding an approximation of d1 to ẑ0. Let d̂1 be
the best approximation (in L2) to d1 obtained in the
same way as ẑ0, from basis spline functions and corre-
sponding N=2m�1 parameters. From equation (7), it
is seen that d1 is orthogonal to the space spanned by
basis functions of ẑo, that is

(BT
1B1)

�1BT
1| {z }

F1

d1 = 0: (8)

Impose a constraint such that, the best approximation
of d1, which is d̂1, is also orthogonal to the space
spanned by the basis functions of ẑo, i.e. F1d̂1 =
0: This constraint introduces N=2m new equations for

constructing d̂1. Hence, the number of coe�cients needed
to represent d̂1 is reduced by half. The new N=2m-long

coe�cient vector representing d̂1 is called p2.
The 2'nd scale di�erence vector is expressed as,

d2 = d1 � d̂1; (9)

which is orthogonal to both spaces spanned by the ba-
sis functions of ẑ0 and d̂1. The next higher resolution

level data can be obtained by adding an approxima-
tion of d2 to ẑ0 + d̂1. Let d̂2 be the best approxi-
mation (in L2) to d2 obtained in the same way as ẑ0,
from basis spline functions and corresponding N=2m�2

parameters. Impose a constraint such that, the best
approximation of d2, which is d̂2, is also orthogonal
to the spaces spanned by the basis functions of ẑo and
d̂1. This constraint introduces N=2

m�1 new equations

for constructing d̂2. Hence, the number of coe�cients
needed to represent d̂2 is reduced by half. The new
N=2m�1-long coe�cient vector representing d̂2 is called
p3.

As in perfect reconstruction based multiresolution
decomposition, similar steps can be performed until d̂m
is represented by N=2-long vector of coe�cients. Those
steps lead to a set of recursive equations,

pi = (ET
i Ei)

�1ET
i di�1; (10)

di�1 = (I �Ei�1(E
T
i�1Ei�1)

�1
E
T
i�1)di�2; (11)

Ei = BiPi

2
4 I

: : :

�(B(i;r))�1B(i;p)

3
5 ; (12)

Fi�1 =

�
Fi�2

(ET
i�1Ei�1)

�1ET
i�1

�
(13)

with the initial conditions,

E1 = B1; d0 = zo; F1 = (ET
1
E1)

�1ET
1
; (14)

where Bi is the N �N=2i B-Spline decimation matrix,
di is the di�erence data representing high frequency
components, Pi is some permutation matrix, andB(i;p)

and B(i;r) are formed by the �rst N=2i+1 and the last
N=2i+1 columns of (Fi�1BiPi), respectively. The re-
cursive formulations (10-14) lead to a transformation
equation,

p = Az0; (15)

where

p = [p1 p2 : : : pm+1]
T ; A = [AT

1 A
T
2 : : : AT

m+1]
T ;

(16)

Ai = (ET
i Ei)

�1ET
i

i�1Y
j=1

(I �Ei�1(E
T
i�1Ei�1)

�1ET
i�1):

(17)
A is called B-Spline Transform matrix. It is com-
posed of m + 1 block matrices, where the size of Ai

is N=2m�i+2 �N , for i = 2; : : : ;m+ 1, and that of A1

is N=2m � N .
Matrix A has the following important properties:

� It provides a multiscale resolution decomposition
for the input data. A1zo represents the low pass
characteristics of zo, andAizo for i = 2; : : : ;m+1
represents the high pass characteristics of zo at
m di�erent scales of resolution.

� It is completely data independent, constructed
from the permutation and B-spline basis func-
tions matrices.

� The small support of B-spline functions provides
that Ai has few nonzero elements.

� Although A is not an orthogonal matrix,

AiA
T
j = 0; 8i 6= j; AiA

T
i 6= I: (18)

A is real with full rank. That is, an orthogo-
nal basis for the span of A can be constructed
via Gram Schmidt Orthogonalization procedure,
applying it to each block separately so that

~A ~AT = I: (19)



� Both the orthogonalized and nonorthogonalized
Ai's have one principal basis function, where each
row is a shifted version of that principal basis
function.

� ~A has a high energy compaction e�ciency.

4. B-SPLINE TRANSFORM APPLIED TO

IMAGE COMPRESSION

B-Spline transform can be generalized for 2-D data as,

Zt = ~AZ0 ~A
T ; (20)

where Zt is the transformed 2-D data, analyzed at dif-
ferent scales of resolution, and ~A is the orthogonalized
B-Spline Transform matrix. Zt has the same total en-
ergy as Z0. To obtain an e�cient compression of in-
put image data, the transform coe�cients matrix Zt
is quantized with a uniform quantizer. After quanti-
zation, the high frequency coe�cients which consist of
few nonzero elements, are generally collected in some
regions. A quadtree algorithm [Chapter 7, 4], pro-
vides an e�cient way of decomposing blocks of high
frequency coe�cients into smaller blocks of only zeros
or nonzeros. Hence, only nonzero coe�cients and their
locations which are output of the quadtree algorithm
are needed to be stored or transmitted after Hu�mann
encoding.

5. SIMULATION RESULTS WITH IMAGE

COMPRESSION

B-Spline Image Compression is tested for a set of 512�
512 greyscale and color images. The results are com-
pared with Discrete Cosine Transform used in the same
compression algorithm. Quantitative results of greyscale
image compression are presented in Tables I-II. Fig-
ure 1 presents Lenna image at four di�erent resolu-
tion levels and Figure 2 presents the di�erence im-
ages. In Figures 3-5, compression results for Lenna
and Harbour images are displayed. The quantitative
results present better performance for B-Spline Trans-
form than DCT. However, B-Spline Transform results
in ringing artifacts around the edges of greyscale im-
ages, whereas DCT results in blockiness. To remove
artifacts caused by B-Spline image compression, trans-
form domain dithering followed by spline smoothing
[Chapter 14, 3] is applied. Transform domain dither-
ing is the operation of adding zero-mean pseudoran-
dom white noise to the transform coe�cients before
quantization. The same noise is subtracted from the
decoded coe�cients before inverse transform. The re-
sults of dithering and smoothing are displayed in Figure
6 and Table III.

Table 1: Energy Packing E�ciency of the �rst 64� 64
(lowest resolution) coe�cients for 512� 512 images.

Image

Transform

type

Lenna Harbour Bridge Cablecar

2D (8 � 8)
block DCT

0.9917 0.9744 0.9657 0.9825

B-Spline

Transform

0.9934 0.9753 0.9682 0.9845

In color image applications, YUV color model is
used where U and V components are sampled at half
the sampling rate. Visual artifacts which are seen at
Y,U and V components separately, are not so visible
in RGB image. Hence, color image compression with
B-Spline Transform performs better both visually and
quantitatively than DCT. The results are presented in
Figures 7-9 and Table IV.

6. CONCLUSIONS

A new transformation based on cubic B-Spline model-
ing is proposed and its application to image compres-
sion is presented. The new transformation provides
multiresolution decomposition of input data, while col-
lecting the most of the input energy in the lowest res-
olution level coe�cients. Test results show better per-
formance than DCT based compression especially in
the smooth areas. Applying transform domain dither-
ing and postprocessing with smoothing result in better
performance near the edges as well.
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Figure 1: Lenna image decomposed into four resolution
levels by B-Spline Transform. a.) Lowest b.) second
lowest c.) second highest d.) highest resolution levels.

Figure 2: a.) Lenna image at the lowest resolution
scale. b.) 2 times magni�ed �rst, c.) 10 times magni-
�ed second d.) 10 times magni�ed third scale di�erence
images.

Figure 3: Left : Original Lenna image. Right :

Original Harbour image .

Figure 4: Reconstructed from DCT coded Left : Lenna
Right : Harbour images.

Figure 5: Reconstructed from B-Spline Transform
coded Left :Lenna Right : Harbour images.

Figure 6: Left : Dithering applied to Lenna image.
Right : Dithering followed by smoothing.

Figure 7: Left : Original Lenna image. Right :

Original Sailboat image.



Figure 8: Reconstructed from DCT coded Left : Lenna
Right : Sailboat images.

Figure 9: Reconstructed from B-Spline Transform
coded Left : Lenna image. Right : Sailboat images.

Table 2: PSNR and MAE vs bitrate results with quan-
tizer step size = 35.

DCT

Image PSNR (dB) MAE bitrate (bpp)

Lenna 32.57 3.50 0.23

Harbour 28.62 6.04 0.48

Bridge 26.85 8.48 0.56

Cablecar 31.54 3.56 0.32

Cornfield 30.50 4.20 0.41

Ball 38.51 0.69 0.11

B-Spline Transform

Image PSNR (dB) MAE bitrate (bpp)

Lenna 32.87 3.12 0.19

Harbour 28.82 5.90 0.43

Bridge 26.96 8.35 0.51

Cablecar 31.70 3.53 0.28

Cornfield 30.71 4.20 0.35

Ball 40.22 0.59 0.11

Table 3: PSNR and MAE vs bitrate results with dither-
ing applied in transform domain.

dithering

Image PSNR (dB) MAE bitrate (bpp)

Lenna 29.94 6.31 0.19

Harbour 27.56 8.06 0.44

Cablecar 29.16 6.81 0.29

dithering+smoothing

Image PSNR (dB) MAE bitrate (bpp)

Lenna 32.57 4.11 0.19

Harbour 28.61 6.61 0.44

Cablecar 31.21 5.05 0.29

Table 4: PSNR and MAE vs bitrate results with quan-
tizer step size = 21, 17,17 for Y, U, and V components,
respectively.

DCT

Image PSNR (dB) MAE bitrate (bpp)

Lenna 27.13 14.12 0.70

Sailboat 26.44 15.72 1.07

Fruits 29.82 5.64 0.58

House 30.03 10.23 0.49

Peppers 29.63 10.77 0.70

B-Spline Transform

Image PSNR (dB) MAE bitrate (bpp)

Lenna 27.13 14.13 0.60

Sailboat 27.66 14.00 0.99

Fruits 31.63 4.95 0.51

House 30.91 9.42 0.41

Peppers 30.71 9.81 0.55


