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ABSTRACT

This paper presents computationally e�cient algo-
rithms for function approximation with hinging hyper-
planes. Approximant units are added one at a time
using the method of �tting the residual.

To �t an individual unit we have to solve a se-
quence of Quadratic Programming problems, an ap-
proach which has proven to o�er signi�cant advantages
over derivative-based search algorithms. Empirical re-
sults on synthetic data illustrate the main characteris-
tics of the algorithms.

1. INTRODUCTION

The universal approximation property of feed forward
neural networks, established at the end of the past
decade, spurred a signi�cant amount of research e�ort
aimed to developing new nonlinear function approxi-
mation strategies. Although it is di�cult to develop
a truly e�ective method in high dimensions, many in-
teresting results have been obtained using di�erent ap-
proaches, including Multilayer Perceptrons, Radial Ba-
sis Functions and Wavelet bases. As is shown in [1],
the election of a suitable basis function may help in
overcoming the curse of dimensionality associated with
classic approximation procedures. As a result of that
e�ort, we now know that continuous functions on com-
pact subsets of IRd can be uniformly approximated by
linear combinations of several kinds of functions (sig-
moidal functions, ridge functions, ramps, hinging hy-
perplanes, . . . ). Besides, we also know that this ap-
proximation problem can be given a constructive solu-
tion where the iterations taking place involve compu-
tations in a reduced subset of approximant functions
[2].

The problem of these kind of constructive algorithms
becomes combinatorial [3]; however, although one must
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only search through a �nite number of feasible solu-
tions, the problem cannot be solved e�ciently.

In this paper we propose a constructive algorithm,
which builds one node at a time, and produces reason-
able approximations using simple and e�cient strate-
gies. As basic non{linear units we use piecewise linear
nodes |hinging hyperplanes (HH)| that have shown
very useful in nonlinear function approximation [4].

The rest of the paper is organized as follows: Sec-
tion 2 describes the kind of constructive algorithms our
procedure belongs to, Section 3 reviews the hinging hy-
perplane approach, Section 4 studies the learning prob-
lem associated with HHs, Section 5 shows the perfor-
mance of our algorithms with some synthetic data, and
�nally Section 6 closes the paper with a discussion of
the results obtained, the conclusions and further work.

2. CONSTRUCTIVE ALGORITHMS.

Constructive algorithms [3] are easy to use, and possess
several advantages over alternative methods, namely:
computational advantages associated with the construc-
tive approach, relatively easy determination of a suit-
able network size, and search algorithms that are more
robust to parameter selection and initial conditions.
Their potential drawbacks are associated with the fact
that constructive algorithms generally will not produce
networks of minimal size. Furthermore, although the
size of the network can be allowed to vary, the function
to be approximated may not be e�ciently represented
by a model with the connectivity scheme imposed by
the algorithm.

Jones [2] provided the �rst constructive solution to
the problem of �nding �nite convex approximations of
a given function in a Hilbert space using elements taken
from a reduced subset. The proof of his result is itself
constructive and thus provides a framework for the de-
velopment of practical algorithms. In a previous paper
[5] we studied the trade-o� among the di�erent param-
eters to guarantee the rate of convergence O(1=n) pre-



scribed in [2] and [1].
In this paper we propose a very simple constructive

solution in which a new approximation of the residual
is combined with the previous approximation in such a
way that the global error is minimized. The algorithms
make use of the aforementioned hinging hyperplanes,
updated following new optimization procedures.

3. FUNCTION APPROXIMATION WITH

HINGING HYPERPLANES.

Breiman [4] proved that it is possible to use hinging hy-
perplanes as members of a base in function expansions

f(x) =
X

hi(x) to approximate continuous functions

on compact sets, guaranteeing a bounded approxima-
tion error

kenk = kf �

nX
i=1

hi(x)k � (2R)4c2=n

where n is the number of nodes in the network, R is
the radius of the sphere in which the compact set is
contained, and c is such that

Z 

w 

2 jf(w) jdw = c <1

These results show that it is possible to achieve arbi-
trarily good approximations of a function by increasing
the number of nodes in the network. However, this is
not possible in practice for some reason:

1. The information of the function f is provided by
way of a sample set S = f(xi; yi)

	
N

i=1 which
contains samples of f at a �nite number of points.
The information in this set is usually insu�cient
to uniquely characterize the unknown function f,
and so the approximation is not optimal.

2. The approximate function must be of �nite size.

3. The learning problem can usually not be solved
in polynomial time.

Therefore, we can only expect to obtain an estimate
of f that approximates f as closely as possible, which is
the goal of our method.

3.1. Hinging Hyperplanes

Hinging hyperplanes (HH) [4] are two hyperplanes joined
together at a hinge function. The main advantages of
using HHs can be summarized as follows:

1. An upper bound on the approximation error is
available.

2. HH constitute a piecewise linear model, and lin-
ear models have proven to be useful in a large
number of problems. Besides, these functions are
nonlinear only in one direction, while remaining
linear in the others, so they are very useful in the
approximation of functions with similar charac-
teristics.

3. They let us use very fast and computationally
e�cient training algorithms.

4. It is very simple and e�cient to create and store
these functions.

Some algorithms have been developed to update the
HH for a training set. Breiman proposed a Hinge Find-
ing Algorithm (HFA) that implements a gradient de-
scent method after partitioning the data set in two sub-
sets, one for each hyperplane to update. This method
shows three important drawbacks: convergence is not
guaranteed, the performance of the method depends on
the initial conditions, and the �nal result may not be
a global minimum of the error.

Another method to improve the HFA, which uses a
damped Newton algorithm to minimize the same error
as in the HFA, was developed by Pucar and Sj�oberg
[6]. Their approach shares some of Breiman's problems;
in spite of the improvements, it cannot guarantee the
convergence of the method. It also comes with the
added disadvantage of requiring a new parameter to be
handled by the user, the step of the Newton method. In
a subsequent paper [7], they proposed a simultaneous
estimation of all parameters in the network, to update
the hyperplanes, which su�ers from the drawback of
requiring an enormous computational burden.

Another drawback of these methods resides in the
algorithm used to construct the network: although a
new hinge function is updated from the residual of the
previous approximation, all base functions must be re-
�tted (back�tted) when a new function is added. This
means that when a new node is added to the network
all previous nodes must be recalculated. This results
in a lack of simplicity of the constructive solution.

Just as these algorithms, a great deal of construc-
tive solutions developed nowadays are not constructive
in a simple way, because they either use Fourier or ran-
dom transforms, or rely upon backpropagation proce-
dures which modify previously connected weights.

In this paper we propose a Barron's like construc-
tive solution which can be formulated in three consecu-
tive steps: �rst compute (1) and then �t (2) the resid-
ual; �nally update the approximation (3).

f(x) 2 IR: Function to be approximated; x 2 IRd.

Initialization: fo(x) = 0; eo(x) = f(x).



for n = 1 to N do

(1) en(x) = f(x) � fn�1(x)
(2) gn(x) � argming kf(x)�(1��n)fn�1(x)��ng(x)k
(3) fn(x) = (1� �n)fn�1(x) + �ngn(x)
endloop

where en(x) stands for the residual and �n is a pa-
rameter which can depend on the norm of the previous
residual [1] or can be selected beforehand, as in the
elegant modi�cation proposed in [8].

The problem arises in the second step: �nding the
function gn that best �ts the current residual. It is very
di�cult to achieve an O(1/n) bound in the approxima-
tion error, although Jones [2] proved that it is su�cient
to produce a function that is within O(1/n2) from the
optimum.

In the next section we review the hinging hyper-
plane approach and explain our learning procedure,
based on the use of the Sweeping Hinge Algorithm,
�rst introduced by D. Hush and B. Horne [3].

4. LEARNING WITH HINGING

HYPERPLANES

By HH we denote a function based on two hinging hy-
perplanes, de�ned as follows:

h(x;w) =

�
wT

+x; (w+ � w
�

)Tx > 0
wT

�

x; (w+ � w
�

)Tx � 0

This function can be viewed as two coupled hyper-
planes, whose intersection (hinge) divides the whole
space into two di�erent subsets:

S+ = fx : (w+ � w
�

)Tx > 0 g

S
�

= fx : (w+ � w
�

)Tx � 0 g

The hinge itself is de�ned in terms of the parameter
w, which stands for the 2D-dimensional vector com-
posed of the two vectors w+ and w

�

. The hinge is the
line where the two hyperplanes intersect; points in the
hinge verify the following equation: (w+ �w

�

)Tx = 0.
In our case the problem is to choose the parameter

w which minimizes, in some sense, the error of the ap-
proximation of a function f . The information available
is a �nite set of function samples. If the regression vec-
tors are denoted by xi, x

T

i
= (xi1; xi2; :::; xid), then the

training set S will consist of the pairs f(xi; yi) g , with
yi = f(xi). The two sets S+ and S

�

, now restricted
to the training set S, de�ne the partition of the data
space. They are forced to be disjoint by including the
points in the hinge in one of the subsets, to make the
problem under study well de�ned. Those points in the
hinge will not be excluded, then, from the minimization
problem.

We now de�ne the empirical risk of the approxima-
tion of the unknown function f in the following way:

Ep(w) =
1

2

X
S

(yi � h(xi; !))
2 (1)

To simplify the evaluation of (1), we will make use
of the following variables:

S2
y
=

1

2

X
S

y2
i
; r+ =

X
S+

yixi; r
�

=
X
S
�

yixi,

R+ =
X
S+

xix
T

i
; R

�

=
X
S
�

xix
T

i
.

After some algebra, we can rewrite expression (1)
in a more compact form:

Ep(w) = S2
y
+

1

2
wT

+R+w+ + (2)

+
1

2
wT

�

R
�

w
�

� wT

+r+ �wT

�

r
�

(3)

De�ning now the matrices:

R =

�
R+ 0
0 R

�

�
r =

�
r+
r
�

�

we can write (1) as:

Ep(w) = S2
y
+

1

2
wTRw � wT r (4)

4.1. The Minimization Problem

Following [3], we will say that a partition of S into S+
and S

�

is admissible (stable) if the matrix R is de�-
nite positive (a true correlation matrix). Minimizing
Ep(w) with respect to w is a quadratic problem with
a global minima provided that R is de�nite positive.
Nevertheless, when we seek for the least squares solu-
tion to Rw = r, we actually move the hinge as we vary
w; therefore, the initial partition is no longer valid, and
expression (3) becomes completely useless. We have to
set up the problem in such a way that this minimiza-
tion process can take place. The solution is to make it
iterative; we will have a collection of problems, start-
ing from an initial partition, where each problem can
be written as a constrained quadratic optimization:

min
w

�
1

2
wTRw� wT r

�

subject to Aw < 0

where A is a matrix with as many rows as the number

of samples in S, A =

�
A+

A�

�
, each row of A+ and A�

taking the following form

a+
i
= (�xi xT

i
) ; xi 2 S+



a�
i
= (xi �xT

i
) ; xi 2 S

�

4.2. Moving the hinge

To iterate the algorithmwe use the following procedure
to move the hinge in search of the optimum value:

1. Initialize the partition and its associated param-
eters fw1; R+; R�; r+; r�; Ag in such a way that
S+ is composed of all the data points but those
for which (w1

+)
Txi is minimum.

2. Re�ne the result by moving the points in the
hinge from one region to another until Ep is min-
imum. Then solve the constrained quadratic op-
timization problem for the partition encountered.

3. Move the hinge among stable partitions by switch-
ing points between S+, recomputing the set of
parameters every time. When all stable parti-
tions have been measured the method keeps the
one achieves the minimum Ep.

5. EMPIRICAL RESULTS

We have done extensive simulations to test the approx-
imation capabilities of the method. In this section we
show some results obtained using the method with two
dimensional signals, without re�tting.

The following �gures represent the results obtained
in the approximation of the two dimensional function
f(x; y) = 1 + sin(2�x) cos(�y) using 24 nodes, as well
as the evolution of the mean square error with each
iteration.
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Figure 1: Original function.
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Figure 2: Approximation with 24 nodes.

6. CONCLUSIONS AND FURTHER WORK

From our analysis of the behavior of the method in
the simulations made, we come to the following con-
clusions:

� The minimization technique employed guarantees
the convergence of the method.

� It does not depend on the initial conditions, and
does not not get trapped in local minima.

� It requires fewer parameters.

� Its computational burden is comparable to Breiman's
method.

� Although it is a purely constructive method, it
can also bene�t from the use of back�tting pro-
cedures.

� The error in the approximation decreases as
1

n
.

We have also noticed that the tail of the hyper-
planes introduces an error that the method can not
compensate with the inclusion of new nodes without
introducing a new error in zones that were already ad-
justed. That is why the greatest part of the error is
placed at the peripheral regions of the training set,
forcing a large number of nodes to be introduced to
re�ne the approximation in this areas.

Occasionally, the method produces residues sym-
metrically distributed around zero. When that hap-
pens, the approximation does not improve with the in-
troduction of more nodes.
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Figure 3: Residual function for 24 nodes.
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Figure 4: MSSE against number of nodes.

These last drawbacks led us to the conclusion that
we should look for a modi�cation of the method to cope
for the problems encountered, preserving at the same
time the good behavior of the algorithm.

We are now exploring a modi�cation of the method
consisting of the truncation of the hinging hyperplanes,
in such a way that the new THH function, th(x;w),

would be de�ned as:

=

8>><
>>:

w+; (wl+ �wl�)
Tx > 0 and wT

l+x � w+
wl+x; (wl+ �wl�)

Tx > 0 and wT

l+
x < w+

wl�x; (wl+ � wl�)
Tx � 0 and wT

l+
x < w

�

w
�

; (wl+ � wl�)
Tx � 0 and wT

l�
x � w

�

9>>=
>>;

where

wT = (wl+ wl� w+ w
�

) ; wl+ and wl� 2 IRd:

This function is comprised of four hyperplanes joined
pairwise continuously at three di�erent hinge locations.
These hinges, de�ned by the components of w induce

linear partitions on the input space which is thus di-
vided into four regions.

We have modi�ed the sweeping algorithm to include
the search of the three hinges of the function.

Preliminary results con�rm our predictions: reduced
error in peripheral regions, and no systematic errors
around zero. However, the algorithm in its present
state requires a large computational burden. Our cur-
rent work is centered around the intelligent exploration
of the optimal partition.
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