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ABSTRACT

We study the local robustness properties of nonlinear
regression M-estimators by analyzing their in
uence
functions. The in
uence functions show that in
u-
ence of position becomes, more generally, in
uence of
model in nonlinear model estimation|indicating that
we must bound not only in
uence of residual but also
in
uence of model. Several examples illustrate the in-
terpretive utility of the new in
uence functions. We
apply the L1 estimator to several nonlinear models and
demonstrate that not only are the nonlinear regression
M-estimators vulnerable to outlying observations, as
in linear regression, but that non-outlying observations
can cause high in
uence. More generally, we show that
in
uence is caused (or mitigated) as much by model
and data properties as it is by estimator properties.

1. INTRODUCTION

The goal of regression is to describe the structure best
�tting the data. Often, a mathematical expression or
model is available (or generated) which (possibly) ex-
plains the data. Due to the nonlinear nature of the
real world, the model is often nonlinear with respect
to the explanatory variables and/or the parameters.
Estimation of nonlinear models, therefore, �nds appli-
cations in every �eld of engineering and the sciences
[1]. Much work has been done to build solid statistical
theories on its use and interpretation [2], [3], [4], [5].
Pre-existing statistical techniques, including robust es-
timators, have been used directly for nonlinear model
estimation problems [6], [7], [8]. However, despite this
large body of nonlinear statistical theory, there has
been little analysis of the tolerance of these estimators
to deviations from assumptions and normality.

When estimating the parameters of a model, we de-
sire the estimation technique to have several properties,
including unbiasedness, consistency, e�ciency, and ro-
bustness. Robustness is concerned with evaluating and

improving the stability of estimation techniques when
data deviate from assumptions [9], [10]. Using these
concepts, the goal of robust regression estimation or
robust model estimation is to estimate the model best
�tting the bulk of the data. This requires techniques
for measuring both the local and global robustness of
an estimator. The most important tool for analyzing
global robustness is the breakdown point, which mea-
sures the maximum fraction (�) of arbitrary gross errors
that an estimator can handle; the most important tool
for studying local robustness is the in
uence function,
which describes the e�ect of an in�nitesimal contam-
ination at x on an estimator T . The maximum bias

curve is an important complement to both the in
u-
ence function and the breakdown point as it links the
various robustness concepts: the gross-error sensitiv-

ity is the slope of the tangent to the maximum bias
curve at � = 0 and the breakdown point is the value
of � at which the maximum bias curve is in�nite. In
this paper, we focus on the local robustness properties
of nonlinear regression M-estimators by analyzing their
in
uence functions.

We de�ne the nonlinear model estimation problem
as follows. Let f(xi; yi) : i = 1; : : : ; ng be a sequence of
i.i.d. random vectors such that

yi = �(xi; �) + ei; i = 1; : : : ; n (1)

where yi 2 < is the ith observation value and xi 2
X � <p is the ith row of the n � p design matrix.
The variables xi are called the explanatory variables

or the carriers; the variable yi is called the response

variable. Let � 2 � � <p be the p-vector of unknown
parameters and ei 2 < be the ith error. Finally, let
�(x; �) : X � � ! < be the model function. Assume
the model �(x; �) is nonlinear with respect to x and/or
� with both observations fyig and carriers fxig ran-
dom. Estimates are denoted by a hat.



2. ROBUSTNESS CONCEPTS

2.1. De�nition of Statistical Functionals

LetX1; : : : ; Xn be a sample from a population with dis-
tribution function F and let Tn = Tn(X1; : : : ; Xn) be
a statistic. When Tn can be written as a functional T
of the empirical distribution function Fn, Tn = T (Fn)
where T does not depend on n, then we call T a statisti-
cal functional. The domain of T is assumed to contain
the empirical distribution functions Fn for all n > 1
and the population distribution function F . The range
of T is assumed to be <.

2.2. De�nition of M-estimators

The speci�c class of statistical functionals we study are
M-estimators. Let  be a real-valued function and let
Tn be de�ned implicitly by

nX
i=1

 (Xi; Tn) = 0 : (2)

The corresponding functional is de�ned as the solution
T (F ) = � of Z

 (x; �)dF (x) = 0 : (3)

Functionals of this form are calledM-estimators. Com-
mon M-estimators include the L1 estimator (or Least
Absolute Deviation estimator) and the L2 estimator
(or Least Squares Estimator). M-estimators are easily
extended to nonlinear regression [6],[7],[5].

2.3. De�nition of the In
uence Function

Following [9], [10], and [11], we say that a functional
T is Gâteaux di�erentiable at F if there exists a linear
functional LF such that for all H

lim
t!0

T (G)� T (F )

t
= LF (H � F ) (4)

whereG = Ft = (1�t)F+tH . LF is called the Gâteaux
derivative of T at F .

The in
uence function of T is de�ned as (4) when
H = �x, the distribution with unit mass at x, yielding

IF (x; T; F ) = lim
t!0

T ((1� t)F + t�x)� T (F )

t
(5)

for x 2 X where the limit exists. The in
uence function
describes the e�ect of an in�nitesimal contamination
at x on the estimator T . We use the in
uence func-
tion to help identify nonlinear model estimators with
unbounded in
uence.

3. DEFINITION OF REGRESSION

M-ESTIMATORS

Given the de�nition of the nonlinear model estimation
problem, let K(x) be the distribution of xi with den-
sity k with respect to Lebesgue measure. Assume ei is
independent of xi and distributed according to G(e=�),
� > 0 with density g with respect to Lebesgue measure.
Let the model distribution be de�ned F�(x; y) with
density f�(x; y) = ��1g((y � �(x; �))=�)k(x), where
f�(x; y) is the joint density of (xi; yi). We will study
the model distribution F�(x; y) with density f�(x; y) =
�(y � �(x; �))k(x) where �(e) is the standard normal
density. We assume a known scale �; without loss of
generality, we put � = 1.

The M-estimator Tn in (2) is, in the more general
multiparameter case, the vector solution to the system
of equations

nX
i=1

�(xi; Tn) = 0 (6)

where � : X ��! <p. Given an empirical cumulative
distribution function (c.d.f.) Gn, the functional form of
the multiparameter M-estimator is Tn = T (Gn), where
T is de�ned implicitly by the vector-valued functionalZ

�(x; T (G))dG(x) = 0 : (7)

Regression M-estimators are a speci�c case of multipa-
rameter estimation. They are de�ned implicitly by

�(Tn) = minf�(�) : � 2 �g (8)

where

�(�) =

nX
i=1

�(r) (9)

for � : < ! <+ and residual ri = yi � �(xi; �). If the
derivative of �(�) exists with respect to � and �(�) is
twice di�erentiable with respect to � then the regression
M-estimator Tn satis�es the system of equations given
by

nX
i=1

�(r) =

nX
i=1

�(x; y; Tn) = 0 : (10)

Here �(r) is the vector-valued function

�(r) =
@

@�
�(r) = �0(r)

@r

@�
= ��0(r)@�(x; �)

@�
: (11)

Put  (r) := �0(r). Given an empirical c.d.f. Gn, the
functional form of the regression M-estimator is Tn =
T (Gn), where T is de�ned implicitly by the vector-
valued functionalZ

�(x; y; T (G))dG(x; y) = 0 : (12)



4. INFLUENCE FUNCTION OF

NONLINEAR REGRESSION

M-ESTIMATOR

Using results in [12], we write the in
uence function as

IF (x; y; ; F�) =  (r)M�1 @�(x; �)

@�
(13)

if M�1 exists, where M is the p� p matrix

M =R �
 0(r)

h
@�(x;�)

@�

i h
@�(x;�)

@�

iT
�

 (r)
@2�(x;�)

@�@�

o
T (F�)

dF�(x; y) : (14)

Note that when
@�(x;�)

@�
= xT , as in linear regression,

(13) simpli�es to

IF (x; y; ; F�) =
 (r)

EK f 0(r)g
E�

�
xTx

	
�1
xT (15)

which is the well-known in
uence function for the M-
estimator of linear regression. In this case, the in
uence
function is written as a product of two factors [10],[11],
speci�cally

IF (x; r; ; F�) = IR(r; ;�) � IP (x; ;K) (16)

where IR(�) is (scalar) in
uence of residual and IP (�)
is (vector-valued) in
uence of position. In linear re-
gression, leverage points are de�ned as extreme values
in X due to their potential for unbounded in
uence of
position.

By introducing several assumptions, we can make
a similar simpli�cation to the in
uence function (13).
Since e and x are independent, we can write the kernel
ofM as a product of components due to residual r and
components due to design x and model �(�). However,
we are still left with a term involving the Hessian of the
model at the K and G distributions. If G is symmetric
and  is odd then this term will vanish. Alternately, we
can neglect the Hessian completely. Without at least
one of these assumptions, it is not possible to separate
M into a product of components due to residual and
components due to design and model. There is much
opportunity for future work which takes into consider-
ation the Hessian of the model.

With the stated assumptions, we write (13) as

IF (x; r; ; F�) = IR(r; ;�) � IM(x; ;K) (17)

where IR(�) is (scalar) in
uence of residual

IR(r; ;�) :=
 (r)

E� f 0(r)g
(18)

and IM(�) is (vector-valued) in
uence of model

IM(x; ;K) :=

EK

�h
@�(x;�)

@�

i h
@�(x;�)

@�

iT��1
@�(x;�)

@�
: (19)

Note that IM depends only on the model, its deriva-
tives, and the design. It is clear that in the linear
regression case, in
uence of model IM(�) simpli�es to
the well-known in
uence of position IP (�).

Assuming a bounded  (�), it is clear that IR(�)
is bounded. However, a similar conclusion cannot be
reached about IM(�) without additional conditions on
the model �(�). The new notation emphasizes that,
for nonlinear regression M-estimators, unbounded in-

uence is caused as much by the properties of the model
as it is by the properties of the estimator and the de-
sign. The in
uence function can be used to gain insight
on the robustness properties of M-estimators at speci�c
models.

5. EXAMPLES

The in
uence function (13) is used as a tool for iden-
tifying weaknesses of design and data in M-estimators
of nonlinear models. Speci�cally, we use the L1 non-
linear regression estimator and calculate the estimates
using the El-Attar-Vidyasagar-Dutta algorithm [8] and
the Broyden-Fletcher-Goldfarb-Shanno approach [8] to
unconstrained minimization.

5.1. Logarithmic Model

Consider the model

�(xi; �) = ln (x3i + �1) + �2

with design x = f1; 2; 3; 4; 5; 6; 10g. We study the exact
�t properties of the M-estimators at this model with
the true parameter ~� = f0; 1g, that is, the estimator
is studied at observed responses exactly matching the
response at the known true parameter with outliers in-
troduced for analysis purposes.

Using the starting point � = f0:1; 0:9g and the given
design, we perform an L1 estimate of the parameters of
the model function. The �tted model parameters are
�̂ = f0:0; 1:0g, as expected.

Using the weakness revealed by the in
uence func-
tion, we calculate the Jacobian vector of the model
function and �nd

J =
@g(xi; �)

@�
=

"
1

x3
i
+�1

1

#
: (20)



Simple calculus shows that limx!1
@g
@�1

= 0, thus fac-
tor space outliers are not Jacobian space outliers. Since
the Jacobian in the in
uence function of the M-estimators
of nonlinear models is unbounded and directly in
u-
enced by the observations, we expect that M-estimators
at this model will not be in
uenced by outlying xi, as
the components of the Jacobian are not unbounded.

Let ~� = f0:0; 1:0g, assume exact �t, and let yjx=10 =
100. Performing an L1 estimate of the parameters of
the model function, we obtain the �tted model param-
eters �̂ = f0:0; 1:0g. Perturbing the outlier further, we
move it to x = 22 and let yjx=22 = 100. We again

obtain the L1 estimate �̂ = f0:0; 1:0g. The perturbed
data and the �tted response are shown in Figure 1.
Note that if a linear model were used at this design,
the outlier would have acted as a leverage point.

5.2. Bent Hyperbola Model

Consider the bent hyperbola model

g(xi; �) = �1 + �2(xi � �4) + �3
�
(xi � �4)

2 + �5
�1=2

studied by St. Laurent and Cook [13] and Ratkowsky
[2]. Using the starting point

� = f0:585;�0:735;�0:359; 0:062; 0:096g

we perform an L1 estimate of the parameters of the
model function for the data in [2] (i.e. we do not study
the exact �t properties). The data and the �tted re-
sponse are shown in Figure 2.

We calculate the Jacobian vector of the model func-
tion and �nd

J =
@g(xi; �)

@�
=

2
6666664

1
xi � �4�

(xi � �4)
2 + �5

�1=2
��2 � �3(xi��4)p

�5+(xi��4)2

�3

2
p
�5+(xi��4)2

3
7777775
: (21)

Application of simple calculus shows that limx!1
@g
@�2

=

1, limx!1
@g
@�3

= 1, limx!�1
@g
@�2

= �1, and

limx!�1
@g
@�3

= 1. Since the Jacobian in the in
u-
ence function of the M-estimators of nonlinear models
is unbounded, and these components of the Jacobian
of this model are unbounded in x, we expect that M-
estimators at this model will be highly in
uenced by
outlying xi.

To con�rm our expectations, we perturb the xi com-
ponent of a single observation such that the observa-
tion becomes an outlier in the factor space X . Speci�-
cally, we move the �rst observation from (�1:39; 1:12)

to (�10; 1:12). Performing an L1 estimate of the pa-
rameters of the model function, we obtain the �tted
model parameters

�̂ = f1:5094;�0:7563;�0:7880; 0:07520; 1:7910g :

The perturbed data and the �tted response are shown
in Figure 3. We observe that the �tted response fol-
lows the outlier exactly. This con�rms our expecta-
tion of the low tolerance of the nonlinear regression
M-estimators to factor space outliers at this model. In
this simple case, we might have 
agged the perturbed
data as a potential leverage point for no other reason
than it being an outlier in X .

Further examples demonstrate other, dangerous,
highly in
uential behavior not directly revealed by the
in
uence function and a source of current research. To
illustrate the low tolerance of the nonlinear regression
M-estimators to non-outlying, vertically perturbed ob-
servations, we move the �rst two observations from
(�1:39; 1:12) to (�1:39; 0:9). The perturbed data and
�tted response are shown in Figure 4. We note that
the �tted response follows the perturbation exactly|
these observations are highly in
uential at this model
despite their non-outlying nature. Traditional tech-
niques would not identify these values. The new in
u-
ence function gives us a tool for identifying the weak-
nesses of design and data in nonlinear model estima-
tion.
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Figure 1: Fit of Logarithmic Model at True Data

with Large xi and yi Perturbation
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Figure 2: Fit of Bent-Hyperbola Model to Band Height Data
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Figure 3: Fit of Bent-Hyperbola Model to Band Height Data

with Single Large xi Perturbation
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Figure 4: Fit of Bent-Hyperbola Model to Band Height Data

with Two Non-outlying Vertical Perturbations


