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1. SUMMARY

Robust estimation is not a new subject of study. In-
deed, it is a major problem in statistics and signal pro-

cessing. For example, Huber notes in 1964 [6] that
when the true distribution deviates, even mildy, from
an assumed Gaussian, the variance of the sample mean

may explode. This motivated his pursuit of a general
theory of robust estimation. As stated in the survey

talk [8], \robust signal processing techniques are tech-
niques with good performance under any nominal con-

ditions and acceptable performance for signal and noise
conditions other than the nominal which can range over
the whole of allowable classes of possible characteris-

tics". A common approach to robust estimation is to
make use of minimax techniques, which o�er optimal

worst-case performance.

This talk considers �ltering problems where it is de-
sired to estimate a function of a signal state using the
information available in certain noisy observations of

the signal. When the least squares criterion is used and
when we assume the plant is completely and accurately

described by an assumed model, then the optimal es-
timator is the conditional mean, computed using the

assumed model. In view of the problems which can be
encountered when the plant deviates from the assumed
model, we consider, following Huber, the use of other

error criteria. The risk-sensitive criterion is one such
alternative, and in the context of robust control theory,

it is known to enjoy robustness characteristics by virtue
of its close connection with the H1 criterion. For this
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reason, several authors have considered risk-sensitive

�lters. However, no robustness results for risk-sensitive
�lters have appeared to date in the literature, to our

knowledge.
This talk gives a precise meaning to the robust-

ness of risk-sensitive �lters. We assume that the true

probabilistic model is �xed but unknown, and that the
estimation (or �ltering) procedure makes use of a �xed

nominal model. It is shown that risk-sensitive esti-
mators (including �lters) enjoy an error bound which

is the sum of two terms, the �rst of which coincides
with an upper bound on the error one would obtain
if one knew exactly the underlying probability model,

while the second term is a measure of the distance be-
tween the true and design probability models. The �rst

term quanti�es \good performance"under nominal con-
ditions, and the second term quanti�es the \acceptable
performance"under non-nominal conditions. Further,

the second term plays a major role in determining the
class of permissible variations from nominal.

Suppose we are given a measurable space (
;F)
and random variables X, Y . Here, Y represents the

observations (measurements) and � = �(X) is a (real-
valued) function ofX to be estimated by a random vari-

able �̂ which is Y = �fY gmeasurable (denoted �̂ 2 Y).

Further, let us suppose that we do not know the un-
derlying probability distribution; however, we assume

that the \true" distribution P�0 belongs to a family
of probability measures fP�g�2A, where A is an ar-
bitrary index set (not necessarily a subset of a �nite

dimensional space). Since we do not know the value
of the parameter �0, we use a design value �d for the

purpose of constructing the estimator �̂. It is not nec-
essary that the design parameter �d belong to A, and

indeed the results presented in this talk are nonpara-
metric; the �'s are used simply as labels.

Theminimum risk-sensitive estimator (MRSE) cost

function is de�ned by

frs(�̂) = E�d [exp(��(�� �̂))] (1)

where � is a non-negative strictly convex function, � >
0 is a risk parameter, and the MRSE can be de�ned



uniquely as the equivalence class of Y-measurable ran-

dom functions achieving the minimum

�̂�rs = argmin
�̂2Y

frs(�̂) (2)

In order to write down the error bound below, we need

to assume that the true measure is absolutely continu-
ous with respect to the design measure: P�0 << P�d ,

since otherwise the bound is vacuous. The proof of the
bound follows from the well-known duality between free

energy and relative entropy.

Theorem 1.1 Assume there exists a Y-measurable ran-
dom function �̂ such that frs(�̂) <1. Then the MRSE
de�ned by (2) exists, and enjoys the following error

bound:

E�0 [�(�� �̂�rs)] �
1

�
flog frs(�̂

�
rs) + R(P�0jP�d)g; (3)

where R(P�0 jP�d) is the relative entropy.

Signal processing problems where it is reasonable to

assume \absolutely continuous uncertainty" are com-
mon, and many results in the literature fall into this
category (e.g. linear-Gaussian signal models with un-

certainty in the state transition matrix). In the follow-
ing sections we study nonlinear �ltering problems with

uncertainty and present MRSE �lters and the corre-
sponding error bounds.

The remainder of the talk considers �ltering prob-

lems in both the risk-sensitive and H1 contexts.

Full details are available in the paper [1].
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