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ABSTRACT

This paper develops coloredL-` filters and evaluates their perfor-
mance in a fundamental speech processing problem: estimation of
the glottal function for speech pitch detection. ColoredL-` fil-
ters are an extension of the temporal/rank order basedL-` filters
in which the rank indexes are quantized (colored) and a bias is
added to each weight. Quantizing the rank indexes reduces the
number of filter parameters and allows the observation window
size to grow beyond that previously practical. It is shown that the
window size/rank quantization tradeoff has advantages in many
applications.

1. INTRODUCTION

The rank ordering of data has proved advantageous in many appli-
cations. Indeed, rank ordering localized outliers in the extremes of
the order set and is thus effective in applications where heavy tailed
noise is common. In many applications, however, rank order alone
is not sufficient. Thus, recent nonlinear filter design has focused
on combining temporal and rank information [2, 10]. These fil-
ters effectively utilize the information in both orderings. However,
their parameter space grows rapidly with window size, limiting the
number of observation samples that can be used in practice.

TheL-` filter is a relatively simple formulation for utilizing
temporal and rank order. Yet theL-` parameter set grows asN2,
whereN is the number of observation samples. The number of
parameters can be reduced toMN by quantizing the rank indexes
to M � N values. This quantization allows for the use of larger
observation windows. It will be demonstrated that this tradeoff be-
tween window size and rank quantization has advantages in many
applications. This paper develops and analyzes coloredL-` filters,
derives optimization procedures, and demonstrates the advantages
of coloredL-` filters in speech pitch detection.

2. L-` TEMPORAL/RANK ORDER FILTERS

TheL-` filter utilizes both the temporal and rank order informa-
tion by weighing each observation sample according to its tem-
poral and rank index. Thus letx = [x1; x2; : : : ; xN ]

T be the

This work is supported by The Rehabilitation Engineering Re-
search Center on Augmentative and Alternative Communication (grant
#H133E30010-96) of the National Institute on Disability and Rehabilita-
tion Research, U.S. Department of Education, the National Science Foun-
dation (grant #HRD-9450019), and the Nemours Research Programs.

(temporally) ordered input samples at a given instant. Letx(1) �
x(2) � � � � � x(N) denote the rank ordered samples andri be the
rank of theith temporal sample, i.e.,xi � x(ri). TheL-` filtering
operation can now be written as

F (x) =

NX
i=1

wi;ri
xi = w

T
~x; (1)

where~x = [~x1;1; : : : ; ~x1;N ; ~x2;1; : : : ; ~xN;N ]
T is the expanded ob-

servation vector,w = [w1;1; w1;2; : : : ; wN;N ]T is the weight vec-
tor, and

~xi;j =

�
xi if ri = j
0 else

(2)

is the interleaving operation.
The standardL-` filter formulation applies a tap weight to

each input sample. The weight applied to each sample is a func-
tion of the sample rank. Thus, the weighted samplewi;ri

xi lies on
one ofN lines depending on which weightwi;1; wi;2; : : : ; wi;N

is used. Note that each line is restricted to pass through the ori-
gin. This restriction can cause discontinuities as samples change
ranks. This restriction is easily lifted by associating a bias with
each weight,F (x) =

P
N

i=1
wi;ri

xi + bi;ri This, however, in-
creases the number of weights to2N2.

The nonlinear mapping capability of theL-` filter often in-
creases with window size. This is a result of the fact that knowl-
edge of rank can be thought of as statistical quantization. For a
stochastic input signal, each order statistic can be described by its
distribution, or more simply, by its mean and variance. Let�(k):N
and�2(k):N be the mean and variance (assuming existence) of the
kth order statistic, respectively. The total number of samples is
indicated byN and the indexk is taken as the offset from the me-
dian,�(N + 1)=2 � k � (N + 1)=2. That is,�(�(N+1)=2):N ,
�(0):N , and�((N+1)=2):N are the means of the minimum, median,
and maximum samples, respectively. Then for many common in-
put distributions,�2(k):N � �2(k):N+2 andj�(k):N � �(k+1):N j �

j�(k):N+2 � �(k+1):N+2j. This is illustrated in Fig. 1 for an input
consisting of Gaussian random variables of unit variance.

Thus the difference between successive order statistic means
decreases with increasing window size. Similarly, the variance of
each order statistic decreases with increasing window size. The
quantization achieved through ranking thus becomes finer (means
move closer together) and less noisy (variances decreased) with
increasing window size. This improving quantization allows for
more specific filter design.
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Figure 1: Order statistic (a) means and (b) variances (indexed from the median) for zero mean, unit variance Gaussian random variables.

The advantages of increasing window size and tap bias are il-
lustrated in Fig. 2. This figure show a sigmoid function that is
to be approximated by a single tap, i.e., only the center sample
in the observation window is weighted,F (x) = wi;ri

xi + bi;ri
wherei = (N + 1)=2. The figure also show theN (MSE opti-
mal) input/output lines for this tap whenN = 5; 15 and 45. The
figures illustrate that optimal tap functions do not pass through
the origin. Also, increasingN improves the approximation. This
can be more clearly seen by examining the expected value of tap
input/output function, Fig. 2 (d). Similar results hold for higher
dimension functions.

While increasing the number of observation samples often re-
sults in improved function approximation and filter performance,
the growth in the number of filter parameters (2N2 for a l-` filter
with bias) limits the window size. Coloring is developed next as a
way of limiting the number of parameters by quantizing the rank
indexes.

3. COLORING OF RANK

Although increasing the window size can improve filter perfor-
mance, it is often not necessary to know the exact rank of each
sample. It is often sufficient to simply know what region of the
ordered set each sample lies in. Moreover, it may be particularly
important to know if a sample lies in certain rank regions, e.g., the
extremes. The regions, therefore, may be nonuniform. This par-
titioning of the ranks can be accomplished through coloring [3],
which is a method for quantizing (temporal or rank) order infor-
mation.

To split the ranks intoM ranges, define theN integer element
vectorq = [q(1); : : : ; q(N)]

T , where1 = q(1) � � � � � q(N) =

M andq(i + 1) � q(i) 2 f0; 1g. The termq(ri) gives the rank
range thatxi lies in. Effectively, we have quantized (or colored)
the ranks toM values. The observation vector can now be ex-
panded to include the knowledge of which rank range each sample
lies in, ~x = [~x1;1; : : : ; ~x1;M ; ~x2;1; : : : ; ~xN;M ]

T ; where now the
interleaving is defined by

~xi;j =

�
xi if q(ri) = j
0 else

: (3)

Given these definitions, the estimate can be expressed as

F (x) =

NX
i=1

wi;q(ri)
xi = w

T
~x; (4)

wherew = [w1;1; w1;2; : : : ; wN;M ]
T is the weight matrix. Note

that as in the previous case, a bias can be associated with each
weight resulting inF (x) =

P
N

i=1
wi;q(ri)

xi + bi;q(ri).
The filtering operation is thus a function of the filter weights,

w, and the rank quantization vectorq. Due to their nonlinear cou-
pling, the joint optimization ofw andq is not tractable. Therefore,
a suboptimal two step recursive approach is taken. This approach
is based on the fact that givenq, the estimate is a linear func-
tion of w that can be optimized in a MSE sense. To optimize
q, a progressive partitioning method is used, which requires the
following definitions. Since the elements ofq are integers that in-
crease monotonically from 1 toM , q can be represented by its
transition points. Lets1; : : : ; sM�1 be the transition points, i.e.,
q(sj � 1) = q(sj) � 1 for j = 1; : : : ;M � 1. Sets0 = 1 and
sM = N , and writes(M) = [s0; : : : ; sM ].

Each of theM rank ranges represented bys(M) can be split
to produce aM + 1 range partition. This generatesM possible
M +1 rank range partitions,si(M +1) = [si0; : : : ; s

i

M+1] where

s
i

j =

(
sj if j < i

round((sj + sj�1)=2) if j = i
sj�1 if j > i

: (5)

Given the initializationk = 2 and starting partitions(1) = [1; N ],
the filter optimization proceeds as follows:

1. Generatesi(k), wi (optimal weight matrix givensi(k))
and the residual estimate errorei for i = 1; : : : ; k � 1.

2. Sets(k) = s
min(k) andw = w

min wheremin is the
index satisfyingemin � ei for i = 1; 2; : : : ; k � 1.

3. If k = M stop. Else incrementk and go to 1.

Rather than using a hard stop, information criteria can be used
to set the number of partition. In Section 5 we employ the AIC [9]
to determine an optimal number of partitions.
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Figure 2: The input/output lines of a single tapL-` (with bias) approximation of a sigmoid function for (a)N = 5, (b)N = 15, and (c)
N = 45. The expected input/output (for Gaussian input) functions are shown in (d). For comparison, the true sigmoid function is shown
in each figure.

4. PITCH DETECTION

Pitch detection is an open fundamental problem in speech process-
ing. This problem remains prominent because of its impact on
other aspects of speech processing. The determination of pitch pe-
riods is confounded by their wide range. Not only do pitch period
durations vary from speaker to speaker, but individual speakers
vary pitch period durations according to pronunciation, emotion,
and prosodic content. Consequently, as of yet, no pitch detection
method exists that performs adequately over the required range of
speakers and operating environments.

Recently developed pitch detectors have focused on determin-
ing the Glottal Closure Instant1 (GCI). Such pitch detectors are
referred to as event (glottal closing) based pitch detectors [1, 5, 7].
Although GCI event detectors have proved more effective at esti-
mating pitch periods than classical methods, no completely satis-
factory event detector method has yet been developed. One prob-
lem common to event detectors is determining an effective GCI
indicator function. Current GCI indicator functions often pro-

1While glottal closure is a complex process, we take a simplified ap-
proach here and assume a specific instant can be identified as the time that
the glottis closes.

duce many false alarms, resulting in numerous potential GCIs, or
misses, resulting in missed GCIs and voiced sections of speech
being classified as unvoiced. In contrast, a very accurate GCI indi-
cator signal can be obtained with the use of an electroglottograph
(EGG) [8]. The differentiated EGG (DEGG) marks the GCI with
a sharp peak, allowing for simple determination of the GCI.

The EGG measures the impedance across an individuals glot-
tis by placing pickups on either side of the throat at the level of
the glottis. The recorded EGG has large shifts in bias which do
not contain information on the GCIs. This signal must therefore
be high-pass filtered to eliminate the bias shifts, leaving only the
high-frequency, information bearing signal. Typically, a simple
differentiator is sufficient for extracting the desired signal. The re-
sulting DEGG signal, after appropriate phase shifting, marks the
GCIs with sharp signal peaks, Fig. 3. The positive peaks in the
DEGG clearly mark the GCIs. To differentiate between voiced
and unvoiced speech, the DEGG can be thresholded. An appro-
priate threshold can be found as a function of the DEGG level
observed during silence. For voiced sections, the speech can be
broken up into frames (frames of 15 msec. were used here), and
local peaks within the frames determined. These local peaks rep-
resent the GCIs. For continuity sake, the GCIs are marked in the



Figure 3: Example of recorded speech (middle) and DEGG (bot-
tom) signals. The GCIs determined from the DEGG signal are
marked by arrows at the top of the figure. Markers without arrow
heads indicate unvoiced frames.

speech as the nearest positive going zero crossing to the time indi-
cated by the DEGG peaks.

Although direct use of EGG signals results in accurate local-
ization of GCIs, the practical utility of the EGG is limited since it
requires the recording of a second channel. This restricts the use of
the actual EGG signal to the laboratory, where individuals can be
monitored. We therefore propose a scheme that utilizes the EGG
signal only during optimization. A diagram of the proposed pitch
detector is shown in Fig. 4. During the optimization, the nonlin-
ear filter is adaptively optimized based on the speech input and the
true EGG. In operation, only the speech input is used and the GCI
is determined from the estimated DEGG signal.

Nonlinear
Filter

Pitch
ExtractorSpeech

EGG

DEGG
Estimate

Pitch
Information

+
+

-
Estimate Error

Differentiator DEGG

Figure 4: Block diagram of proposed pitch tracker.

The nonlinear nature of both speech and EGG signals neces-
sitates the use of nonlinear techniques, such as those based on am-
plitude [4, 6]. Here, we focus on rank, as formulated in the colored
L-` filter, as an indicator of amplitude. The reliance on rank has
inherent advantages in that it allows the processing of signals at
different scales without the need for normalization. Proper nor-
malization is often problematic, especially for short data sets.

5. RESULTS

The results presented here are for speech sample at 16 kHz. The
proposed method and that based on wavelet decomposition [7] are
compared using GCIs determined with direct use of EGG signals
as a reference. Under the proposed method, the speech signal is
down-sampled prior to DEGG estimation. Several down-sampling
ratios and filter window sizes are investigated.

To evaluate the effectiveness of determining GCIs from es-
timated DEGG signals, two male speakers were recorded (both
audio and EEG) speaking the “My Grandfather” paragraph. The
coloredL-` filter was optimized using the second speaker. The
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Figure 5: Estimation error as a function of the number of rank
ranges (colors) for various window sizes.

GCIs were estimated for both speakers using the true and estimated
DEGG signals, as well as the wavelet based [7] approach.

Consider first the filter optimization results. Figure 5 shows
the estimation MSE as a function of the number of colors (rank
ranges). Results are shown for several window sizes in the down-
sampling by two case. The curve for each window size is termi-
nated at the point where the AIC (dashed line in plot) increases.
Note that a substantial decrease in error results after only a few
rank ranges are added. Figure 6 shows the optimization produced
partitioning for the first six steps of window sizeN = 51 case.
Note that the extreme ranks are more finely quantized than the
central ranks. Thus, the extremes of the ordered set provide the
most valuable information. The optimization produced weight and
bias values are plotted in Fig. 7. An examination of the weights re-
veals that those corresponding to the extreme rank ranges have the
most variation. In fact, the weights have the structure of a differ-
entiator, where the level of differentiation is controlled by the rank
ranges. Similar partition and weight structures were observed for
all sampling rates and window sizes. Thus, the filter can be intu-
itively interpreted as differentiating the input speech signal when
the center of the observation window contains samples that are in
the extremes of the ordered set. This results in a sharp peak in the
filter output at the GCI, Fig. 8.

The sharp peaks in the estimated DEGG signal can be used
to easily determine the GCIs. Using the GCIs determined directly
from the recorded EEG as a benchmark, Table 1 reports the per-
centage of GCI matches, insertions, deletions, as well as required
processing time, for the GCIs in the “My Grandfather” paragraph
determined from the DEGG estimation method and the wavelet ap-
proach. Note that the estimated DEGG method produces slightly
better results and requires significantly less processing time. The
computational savings arise from the fact that the estimation filter,
after sorting, is linear. The ranking processed adds onlyO(lnN)

operations since samples are taken in serially.

The results indicate that the further development of optimized
pitch detectors is warranted and that the DEGG is one possible
source for a “training” signal. Additionally, the results indicate
the coloring is an effective means of quantizing the rank indexes
and constraining filter parameter growth, thus allowing the filter
window to grow beyond that previously possible.



Speaker #1 Speaker #2
Method/SR Time Matches Insertions Deletions Time Matches Insertions Deletions

Wavelet 222.4 94.88 7.35 5.12 203.6 86.39 13.10 13.61
Est. DEGG (8K) 84.5 96.69 10.91 3.31 72.8 93.82 10.74 6.18
Est. DEGG (4K) 46.5 96.23 8.37 3.77 42.6 91.92 6.49 8.08
Est. DEGG (2K) 27.0 95.95 7.57 4.05 21.9 93.75 6.52 6.25

Table 1: The required processing time (seconds on a SPARC 20) and the percentage of matches, insertions, and deletions for GCIs
determined by the wavelet and estimated DEGG methods. The estimation filter utilize 101 observation samples and 10 rank ranges. Three
down-sampling ratios were investigated.

split #1

split #2

split #3

split #4

split #5

split #6

(1-25) (26-51)

(1-13) (14-25)
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(26-38) (39-51)

(39-44) (45-51)

Figure 6: ForN = 51 the first 6 splitting partitions generated
during the optimization.
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Figure 8: Speech, estimated DEGG, and marked GCIs.


