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ABSTRACT

Multivariate median �lters represent a powerful tool for
edge preserving noise removal from multichannel digital im-
ages. However, the usability of such �lters in practical ap-
plications is often limited because of their high computa-
tional complexity, all the more that a comprehensive anal-
ysis of the complexity of the various classes of multivari-
ate medians is still missing. In this work, the complex-
ity of many multivariate extensions of the median �lter is
brie
y discussed. Both theoretical analysis and experimen-
tal results show that the computational complexity depends
mainly on the strategy adopted to sort multivariate data.
The use of marginal ordering leads to the fastest algorithms,
�lters relying on reduced ordering have an intermediate be-
havior, whereas those based on aggregate ordering are by
far the most complex.

1. INTRODUCTION

Considerable attention has recently been paid to the exten-
sion of scalar ranked-order �lters to the multichannel case;
to this aim, several schemes have been proposed trying to
de�ne a multichannel vector median operator with proper-
ties similar to those of its scalar counterpart. A problem of-
ten arising with multivariate median �lters is computational
complexity; all the more that, though the noise removal ca-
pabilities of these �lters have been thoroughly investigated,
a comprehensive analysis of their complexity has not been
carried out yet.

Virtually all the multichannel order-statistics �lters pro-
posed so far are based on three di�erent ranking schemes.
According to the classical de�nition by Astola et al. [1], the
aggregate ordering technique [2] is used: input samples are
ordered on the basis of the sum of the distances to all the
other points in the window. The output of the Vector Me-
dian �lter (VM �lter) is chosen as the �rst ordered sample,
i.e. the point for which the sum is minimum. VM �lters
are a natural extension of scalar median �lters, however,
their high computational load prevents their use in many
applications.

Filters based on multivariate reduced ordering (R-VM
�lters) have been �rst introduced by Hardie and Arce [3]:
samples are ordered according to the distance to a properly
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chosen central point and the �rst ordered sample is the out-
put of the �lter. In [3] the e�ectiveness of this class of �lters
is carefully analyzed and its good �ltering capabilities high-
lighted for the special case in which the sample mean vector
is chosen as the central point. As to complexity, R-VM �l-
ters represent a considerable improvement with respect to
VM �lters, since a lower number of distances must be com-
puted at each window location.

The simplest ranking scheme is marginal ordering [2],
which consists in the independent ordering of the input
sample components. The use of marginal ordering leads
to the de�nition of the Marginal ordering Vector Median
�lter, (M-VM �lters, [4]), which corresponds to the compo-
nentwise application of the scalar median �lter. The M-VM
�lter and its generalized versions couple good �ltering ca-
pabilities and low complexity [4], however, they can not be
used in applications where closed operations are mandatory.

In this note, the problem of determining the complex-
ity of �lters belonging to the above three classes is brie
y
addressed.

Throughout the rest of the paper, an n � n �lter win-
dow will be assumed; let also N = n � n be the number
of samples contained in the �lter window, with each sam-
ple being a point in Rp. The complexity of the �lters will
be computed in terms of the number of square roots, prod-
ucts, additions (actually algebraic sums, i.e. additions and
subtractions), and comparisons that must be performed at
each window location, and it will be considered as a func-
tion of n. Finally, we will suppose �ltering is carried out by
scanning the image by rows, from left to right.

2. CLASSICAL VM FILTERS

Given N samples f~x1:::~xNg in Rp the output of the vector
median operator is de�ned as [1]8>><
>>:

~xVM 2 f~x1; ~x2:::~xNg

NX
i=1

k ~xVM � ~xi k �

NX
i=1

k ~xj � ~xi k j = 1 :: N
(1)

where k k is a norm in Rp. The direct application of equa-
tion (1) requires the evaluation of the distances between all
the possible couples of samples, i.e. (n2 � 1)n2=2 = O(n4)
vector distances. By using a running algorithm faster oper-
ations can be achieved. More speci�cally, at each window
location, the vector median operator is carried out by means



of a 3-step process: i) the distances between the points leav-
ing the �lter window and those which were already inside
it at the previous step are computed; ii) for each point, the
sum of the distances to all the other points is updated by
subtracting the distances to the points leaving the window
and by adding those to the ones entering it; the sums rel-
ative to the new points are computed from scratch; iii) the
point with the minimum sum is chosen. The �rst step re-
quires the computation of (n2�n)n+n(n�1)=2 distances;
for the second one, 2n(n2�n) algebraic sums are necessary
to update the old sums and n(n2 � 1) additions are needed
to initialize the sums of the new samples; �nally, n2 � 1
comparisons must be performed to choose the sample for
which the sum of distances is minimum.

To determine the actual number of elementary opera-
tions required by a VM �lter, the metric adopted to com-
pute distances must be taken into account. Such numbers
are summarized in Table I, whereas the overall complexity
of VM �lters is given in Table II. By focusing on asymptotic
complexities, it turns out that the VM2 �lter has the high-
est complexity, since it requires the computation of O(n3)
square roots, O(n3) multiplications and O(n3) additions.
The complexity of the VM �lter based on squared Euclidean
metric is O(n3) too, but only multiplications and additions
are involved. Finally, the VM1 �lter exhibits the lowest
complexity, since only O(n3) additions and O(n3) compar-
isons must be evaluated.

2.1. Fast VM �lters

To reduce the complexity of VM �lters several fast algo-
rithms have been proposed [5] [6] [7]. In [5] a fast algorithm
is described for the squared Euclidean VM �lter (F-VM2

2 �l-
ter). The algorithm relies on the fact that the sample min-
imizing the sum of the squared Euclidean distances is the
point closest to the window centroid ~xa (the sample mean
vector). This suggests the possibility of choosing the VM
by simply computing the distance between each sample and
~xa. Once again the algorithm consists of 3 steps: i) eval-
uation of ~xa; ii) computation of the distance between the
samples and ~xa; iii) choice of the minimum distance sam-
ple. If a running algorithm is used to compute the sample
mean vector, 2pn additions and p divisions are needed to
perform the �rst step. The choice of the point closest to the
centroid can be carried out through the computation of n2

squared Euclidean distances, i.e. pn2 multiplications, 2pn2

additions and n2 � 1 comparisons. Henceforth, the com-
plexity of the F-VM2

2 algorithm is O(n2) both in terms of
multiplications and additions, which constitutes a consid-
erable improvement with respect to the O(n3) complexity
of classical algorithms.

VM �lters based on 1-norm and 2-norm are preferable
to the VM2

2 �lter because of their superior edge preserv-
ing capabilities. With regard to the Euclidean VM �lter,
no fast algorithm has been proposed so far, instead, at-
tempts trying to speed it up rely on the approximate fast
computation of the Euclidean distance (AF-VM2 �lter [6].
The overall scheme of the algorithm is the same as that
of classical implementations, the only di�erence being the
number of elementary operations required to compute the
approximate distance. An accurate description of the ap-

proximation used to speed up the computation of the Eu-
clidean norm is outside the scope of this brief note, here it
only needs saying that the general form of the approximated
norm is

k ~x k2 ' k ~x k2;app =

pX
i=1

ai j x(i) j (2)

where the ai's are suitable constant and x(i) indicates the
i-th ordered components of vector ~x. If sorting of compo-
nents is achieved by means of the quicksort algorithm (an
O(p log p)-comparisons algorithm), it can be readily seen
that the asymptotical complexity of the AF-VM2 �lter is
O(n3) multiplications, additions and comparisons, that is
the same of the VM2 �lter except for the evaluation of O(n

3)
square roots.

As concerns 1-norm vector median �ltering, a fast algo-
rithm has been proposed recently in [7]. Again, the exact
description of the algorithm and the discussion of its com-
plexity would be too a long task to �t in this brief note,
however, the basic idea the algorithm relies on is very sim-
ple and will be outlined below. Given a point ~x in Rp,
the sum of distances between ~x and the window samples is
considered as a cost functional f(~x). Let ~xm be the point
where f(~x) assumes its absolute minimum. If ~xm is known
and the di�erence di = f(~xi) � f(~xm) can be computed
easily for each point ~xi of the �lter window, then a fast
algorithm is achieved by minimizing di instead of f(~x). In
this way, in fact, only n2 di�erences must be computed thus
leading to an O(n2) algorithm. Of course, this is true only
if the time spent to compute ~xm is negligible with respect
to the overall computation time. Indeed, this is always the
case, since the non-constrained minimization of f(~x) corre-
sponds to the componentwise application of the scalar me-
dian [5], which is a very fast operator [8]. For a discussion
of how the di's can be calculated the reader is referred to
[7], here it is only important to point out that the 1-norm
fast median �lter (F-VM1 �lter) can be split into 2 parts:
�rst the scalar median is componentwise applied, then the
di�erences di's are computed and the minimum one is se-
lected. With regard to the �rst part, it can be shown that
only O(n) comparisons are required [8]. The second part,
instead, requires the computation of n2 di's. In [7] it is
also demonstrated that each di can be computed by means
of O(p) additions only, thus yielding an overall asymptotic
complexity of O(n2) additions and comparisons. Indeed,
the F-VM1 �lter represents a signi�cant improvement with
respect to the classical implementation of VM �lters.

3. MARGINAL VM-FILTERS

The simplest way to extend the ranking of a set of samples
to the Rp case is marginal ordering [2] [4]. In marginal
ordering, multivariate samples are ordered independently
along each dimension, that is:

x(1)1;1 � x(2)1;1 � ::: � x(N)1;1

x(1)2;2 � x(2)2;2 � ::: � x(N)2;2

:::

x(1)p;p � x(2)p;p � ::: � x(N)p;p

(3)



Table 1: Number of elementary operations required to evaluate a distance in Rp. Absolute values and comparisons are
considered togheter

Distance metric

Operation 2-norm squared 2-norm 1-norm approx. 2-norm

Square roots 1 - - -

Mult. & div. p p - p

Additions 2p 2p 2p 2p

Comparisons - - p p + O(log p)

Table 2: Complexity of VM �lters. For the F-VM1 case the signal is assumed to be uniformly distributed between 0 and a

Asymptotic complexity

Filter type Square roots multiplications additions comparisons

VM2 O(n3) O(n3) O(n3) O(n2)

VM2
2 - O(n3) O(n3) O(n2)

VM1 - - O(n3) O(n3)

F-VM2
2 - O(n2) O(n2) O(n2)

AF-VM2 - O(n3) O(n3) O(n3)

F-VM1 - - O(n2) O(n2)

where x(i)j ;j is the j-th component of the i-th ranked sam-
ples, where ranking is performed with respect to the j-th
component. Marginal ordering Vector Median �ltering (M-
VM �lter) is obtained by selecting for each component the
(� +1)-th ranked sample (2� +1 = N), i.e. by component-
wise applying the scalar median �lter

~xM�VM =
�
x(�+1)1;1; x(�+1)2;2; :::x(�+1)p;p

�
(4)

Note that the output of the M-VM �lter may not correspond
to any of the input samples. The complexity of the M-VM
�lter is easily derived by noting that it corresponds to p ap-
plications of the scalar median. On the other hand, in the
common case in which sample values are integer numbers,
a very fast algorithm can be used to implement the scalar
median �lter (running median [8]) . According to it, the
histogram of the points inside the window is built and the
median of the histogram is chosen as the �lter output. More
speci�cally, at the beginning of each row the histogram is
built from scratch, whereas at the other locations the new
histogram is obtained by updating the old one according
to the values of the points entering and leaving the win-
dow. Also the median of the histogram is not computed
from scratch at each window location, instead the number
of points lying on the left of the old median is continuously
updated, and the median position is moved to the left or to
the right according to the number of points currently on its
left. By noting that at each new location n points out of
n2 are changed, and that only comparisons are needed to
update both the median and the window histogram, it can

be argued that the complexity of the M-VM �lter is equal
to O(n) comparisons, thus leading to very fast operations.

Many modi�cations to the basic M-VM �lter have been
proposed to achieve better performance in presence of Gaus-
sian noise: e.g. the �-trimmed Vector Mean �lter (M-�VM
�lter,) the Vector Modi�ed Trimmed Mean �lter (V-MTM
�lter), the Vector Double-Window Modi�ed trimmed Mean
(V-DW-MTM �lter) [4], however, truly speaking most of
these �lters can not be considered as real vector medians,
and will not be considered further.

4. REDUCED VM-FILTERS

The last class of multivariate median �lters is obtained by
considering reduced ordering (Reduced ordering Vector Me-
dian �lters, R-VM �lters) [3]. In reduced ordering, multi-
variate samples are ordered according to their distance to
a given central point. Many di�erent schemes can be de-
�ned according to the choice of the central point and to the
metric employed to calculate distances to it. Let us begin
with the R-VM2;mean �lter, that is an R-VM �lter which
uses the sample mean as the central point and the (squared)
Euclidean metric to compute distances (note that, since dis-
tances to the central point are only used to sort samples,
the squared Euclidean metric can be used instead of the
linear one, which is more complex to calculate). For each
window location the sample mean has to be computed �rst,
by using a running algorithm this can be accomplished by
means of 2np additions and p divisions. In addition, pn2



Figure 1: Computation time of some multivariate median �lters. The shaded areas depicts the range where the computation
time of �lters based on di�erent sorting schemes lies. Data refer to 256 � 256 RGB images.

multiplications, 2pn2 additions and n2�1 comparisons must
be performed to compute distances and to choose the min-
imum distance sample. Similar considerations hold for the
R-VM1;mean �lter, i.e. a �lter which orders samples ac-
cording to their distance to the window sample mean. 2np
additions and p divisions are required to update the sample
mean, while 2pn2 additions, pn2 absolute value and n2 � 1
comparisons are needed to choose the minimum distance
point. When the marginal median is used as the central
point, the R-VM2;med and the R-VM1;med �lters result. In
both cases, the �rst step consists in the application of the
M-VM operator, whose complexity has been shown to be
equal to pO(n) comparisons. Then, n2 distances must be
evaluated and the point for which the distance is minimum
selected. As before, this calls for the computation of pn2

multiplications, 2pn2 additions and n2 � 1 comparisons for
the R-VM2;med case, and 2pn2 additions, pn2 absolute val-
ues and n2 � 1 comparisons in the R-VM1;med case. An
interesting solution for the choice of the central point has
been proposed by Tang et al. [9], which introduced the VR1

�lter as the sample in the window which minimizes the sum
of distances to ~xa, ~xm and ~xn� :8><

>:
~xV R1

2 f~x1; ~x2:::~xNg

~xV R1
= arg min

i=1:::N
fk ~xa � ~xi k2 +

k ~xm � ~xi k2 + k ~xn� � ~xi k2g

(5)

where ~xn� is the window central point. The application of
the VR1 �lter requires the sample mean and the marginal
median to be computed at each window location, which
in turn requires 2np additions, p divisions and O(n) com-
parisons; besides, for each window sample, the sum of 3
Euclidean distances must be evaluated, i.e. 3n2 square
roots, 3pn2 multiplications and 6pn2 additions. At last,
n2 � 1 comparisons are needed to pick the sample with
minimum sum of distances. The overall complexity, then,
is still O(n2), but the presence of 3n2 square roots makes

the algorithm less attractive from a computational point
of view. A possible solution to get around the problem,
has been advanced by Tang et al. [9] which suggest to use
squared distances, that is:8>><

>>:
~xV R2

2 f~x1; ~x2:::~xNg

~xV R2
= arg min

i=1:::N
fk ~xa � ~xi k

2
2 +

k ~xm � ~xi k
2
2 + k ~xn� � ~xi k

2
2g

(6)

which can be reduced to the more pleasant form(
~xV R2

2 f~x1; ~x2:::~xNg

~xV R2
= arg min

i=1:::N

�
k ~xc � ~xi k

2
2

	 (7)

with ~xc = (~xa+~xa+~xn�)=3. In this way the �lter complex-
ity is noticeably reduced, since in addition to the computa-
tion of the sample mean, the marginal median and their lin-
ear combination, only n2 squared Euclidean distance must
be computed. The overall �lter complexity, then, is pn2

multiplications, 2p divisions, 2p(n2 + n + 1) additions and
n2 � 1 +O(n) comparisons.

A slightly di�erent approach to R-VM �ltering has been
proposed by Hardie and Arce [3] (VRE �lters). According
to their proposal, the samples are �rst sorted according to
reduced ordering, but ~xn� is substituted only if its distance
to the central point used for sorting is larger than that of
the sample with a prede�ned rank. Though the �ltering
behavior of the VRE �lter has some original characteris-
tics, from the point of view of computational complexity it
behaves as the R-VM �lters analyzed above.

5. TESTS AND COMPARISONS

The above theoretical analysis has been validated through
exhaustive testing. All the multivariate �lters have been
implemented and their computing requirements measured.



Figure 2: Fast algorithms permit to reduce signi�cantly the computation time of VM �lters. Data refer to the �ltering of a
256� 256 RGB images.

Filters have been applied to a 256 � 256 RGB image (the
popular pepper image) corrupted with contaminated Gaus-
sian noise (� = 20, spike rate = 5%). Noise has been added
independently to each image component. Filters have been
run on a DecStation 5000/240. The results we have ob-
tained are reported in the diagrams of �gures (1) and (2).
In �gure (1) the computational complexity of the various
classes of �lters is depicted. The range of complexities char-
acterizing the �lters of each class is highlighted by shadow-
ing the area between the lowest and the largest computing
time for that class. With only few exceptions (V-MTM,
V-DW-MTM and VR1 �lters), �lters belonging to the class
of marginal medians have the lowest complexity, whereas
VM �lters are characterized by very large computing time.
As expected, the complexity of multivariate medians based
on reduced ordering is half-way between those of VM and
M-VM �lters.

In some cases the use of fast algorithms permits to lower
the computational burden considerably. This is the case of
the F-VM1 and F-VM

2
2 �lters. In �gure (2) the computation

saving achievable through these �lters is pointed out. As
it can be seen, the use of the fast algorithms permits to
reduce the computational complexity to that typical of R-
VM �lters. This is quite obvious for the F-VM2

2 �lter, since
in [5] it is demonstrated that such a �lter is equivalent to
the R-VM2;mean �lter. On the contrary, the F-VM1 �lter
represents a major improvement, since it permits to achieve
the performance of classical vector medians at a computing
cost which is typical of R-VM �lters.
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