
BASEBAND VOLTERRA FILTERS FOR IMPLEMENTING CARRIER BASED

NONLINEARITIES

Gil M. Raz and Barry D. Van Veen, Member, IEEE

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

1415 Engineering Drive, Madison, WI 53706 USA
email: raz@ece.wisc.edu vanveen@engr.wisc.edu

ABSTRACT

A diagonal coordinate representation for Volterra �lters is
developed and exploited to derive e�cient Volterra �lter
implementations for processing carrier based input signals.
In the diagonal coordinate representation the output is ex-
pressed as a sum of linear �lters applied to modi�ed input
signals. Hence, linear �ltering methods are employed to
implement the nonlinear �lter on a baseband version of the
input. Downsampling is then used to reduce computational
complexity.

1. INTRODUCTION

The Volterra �lter [5] is one of the most widely used nonlin-
ear system representations, in large part because the output
is a linear function of the �lter parameters. A causal, stable,
time-invariant, �nite memory, discrete-time system may be
represented in terms of the Volterra �lter output

y(k) =

NX
n=1

yn(k) (1)

where

yn(k) =

m�1X
k1=0

� � �

m�1X
kn=0

hn(k1; : : : ; kn)

nY
i=1

u(k � ki) (2)

Here m is the memory length, hn(k1; : : : ; kn) is the n
th or-

der kernel, and u(k) is the input. The kernels can be as-
sumed symmetric with respect to any permutation of the
independent variables without loss of generality.

One of the problems inherent to the Volterra represen-
tation is the computational complexity involved in calcu-
lating the output due to the large number of parameters in
the Volterra kernels. There are several methods of reduc-
ing computational complexity using approximated Volterra
�lters.

This paper develops a computationally e�cient method
for exact Volterra �lter implementation by assuming the
input to the system is band limited. Band limited inputs
frequently occur in communication systems applications of

Supported by the Army Research O�ce under Grant

DAAH04-93-G-0208.

Volterra �lters, such as arise in equalization of nonlinear
channels [4, 1]. The computationally e�cient implementa-
tion presented here is obtained by expressing the Volterra
�lter in terms of a diagonal coordinate system. The out-
put is then given by a sum of linear �lter outputs operating
on nonlinear combinations of the input. Down-sampling is
used to decrease the computational cost of implementing
the linear �lters. The diagonal coordinate representation
also o�ers clear insight into the relationship between the
characteristics of the output in the frequency domain and
the �lter parameters. This interpretation o�ers signi�cant
advantages over the multidimensional frequency domain in-
terpretations proposed in [2] for many problems.

The outline of this work is as follows. In Section II
the diagonal coordinate representation for the Volterra �l-
ter is derived. The down-sampling based computationally
e�cient implementation for band limited input is derived
and analyzed in Section III. The paper concludes with a
summary.

2. DIAGONAL COORDINATE

REPRESENTATION FOR DISCRETE TIME

FINITE MEMORY VOLTERRA FILTERS

It is insightful to rewrite the Volterra �lter output in terms
of the diagonal elements of the kernel. Begin by removing
the redundant summation indices in (2) associated with the
kernel symmetry. We write

yn(k) =

m�1X
k1=0

m�1X
k2=k1

� � �

m�1X
kn=kn�1

hn(k1; : : : ; kn)

�C(k1; : : : ; kn)

nY
i=1

u(k � ki) (3)

where C(k1; : : : ; kn) is the number of di�erent possible per-
mutations of the set of numbers k1; : : : ; kn.

Now introduce the change of coordinates

k1 = s
ki = s+ ri�1 8i = 2; : : : ; n

(4)

so that the output of the nth order kernel is written as

yn(k) =

m�1X
r1=0

m�1X
r2=r1

� � �

m�1X
rn�1=rn�2

m�1�rn�1X
s=0

hn(s; s+ r1; : : : ; s+ rn�1)



�C(0; r1; : : : ; rn�1)u(k� s)

n�1Y
i=1

u(k � s� ri) (5)

De�ne the new signals

vr1;:::;rn�1 (k) = u(k)

n�1Y
i=1

u(k � ri) (6)

and �lters

gr1 ;:::;rn�1 (k) = C(0; r1; : : : ; rn�1)hn(k; k+r1 ; : : : ; k+rn�1)
(7)

Hence, (5) may be rewritten as

yn(k) =

m�1X
r1=0

m�1X
r2=r1

� � �

m�1X
rn�1=rn�2

vr1;:::;rn�1 (k) � gr1 ;:::;rn�1 (k) (8)

where � is the convolution operator.
Here we have expressed the output of the nth order

kernel as a sum of one-dimensional convolutions. A one-
dimensional frequency domain description for the nth or-
der kernel output is obtained by taking the discrete-time
Fourier transform of (8)

Yn(!) =

m�1X
r1=0

m�1X
r2=r1

� � �

m�1X
rn�1=rn�2

Vr1 ;:::;rn�1 (!)Gr1 ;:::;rn�1 (!)

(9)
Here Vr1 ;:::;rn�1 (!) and Gr1 ;:::;rn�1 (!) are the discrete-time
Fourier transforms of vr1;:::;rn�1 (k) and gr1 ;:::;rn�1 (k) re-
spectively.

While it is useful to think in terms of diagonal coordi-
nates, it forces a rather cumbersome notation. Let D(n;m)
be the number of non-redundant diagonals, paralleling the
main diagonal, in the kernel hn(k1; : : : ; kn). We may ex-
press D(n;m) in closed form [3] as

D(n;m) =
(n+m� 2)!

(n� 1)!(m� 1)!
(10)

Now de�ne rj , j = 1; 2; : : : ;D(n;m) as the (n � 1)-
tuple [r1; : : : ; rn�1] corresponding to the jth diagonal of
hn(k1; : : : ; kn) so that we may rewrite (8) and (9) as

yn(k) =

D(n;m)X
j=1

grj (k) � vrj (k) (11)

and

Yn(!) =

D(n;m)X
j=1

Grj (!)Vrj (!) (12)

respectively.
We refer to (11) as a serial implementation of a ho-

mogeneous Volterra �lter of order n. The computational
complexity of this implementation is determined as follows.
The average length of the impulse responses gri (k) is

Nlength =

0
@m�1X

r1=0

m�1X
r2=r1

� � �

m�1X
rn�1=rn�2

(m� rn�1)

1
A = (D(n;m))

=
n +m� 1

n
(13)

ω

ω

ω

ω−ω

−3ω 3ω

4ω2ω

3∆ω

4∆ω

l=0 l=1 l=2 l=3

l=0 l=1 l=2 l=3 l=4

(a)

(b)

(c)

n=3

n=4

U

V

−2ω−4ω

00

ω0−ω0 00

0000

r

Vrj

j

(ω)

(ω)

(ω)

Figure 1: Frequency support of input and modi�ed
input.

The number of real multiplications required to calculate
vrj (k), j = 1; 2; : : : ;D(n;m) is approximately bounded by
2D(n;m) [3]. Hence, the overall number of real multipli-
cations required to compute each output value is Mserial =
D(n;m)(2 + Nlength), assuming the convolution is imple-
mented in the time domain.

The diagonal coordinate representation is particularly
useful interpreting systems that are output band limited
because the output frequency content is directly related to
the frequency response of the diagonal elements of the ker-
nel. In the following section we extend this interpretation
to include knowledge of the input frequency support.

3. EFFICIENT IMPLEMENTATION FOR

CARRIER BASED INPUT

Let the input to the nonlinear system, u(k) be a band lim-
ited with bandwidth �! and center frequency !0, as de-
picted in Figure 1 (a). We assume all frequencies are nor-
malized to the interval [��; �], with ! = � representing
the Nyquist frequency. The output of an nth order nonlin-
ear system may have energy at frequencies up to n times
the highest input frequency. Hence, to avoid aliasing in the
system output we require n(!0 +

�!
2
) � �. For sake of

simplicity, we shall assume n(!0 +
�!
2
) = �.

While carrier based signals are often continuous func-
tions of time, the discrete-time approach followed in this
section is instructive and leads to an e�cient discrete-time
implementation for sampled continuous-time signals.

3.1. Frequency Domain Interpretation

Equation (12) indicates that the band of frequencies in
which the output yn(k) lies is limited to the bands for
which vrj (k), j = 1; 2; : : : ;D(n;m) contains energy. Hence,
we relate the frequency support of the input u(k) to that
of the vrj (k). The DTFT of the input, U(!), has two



bands of energy in the range [��; �]. They are, I� =
[�!0 �

�!
2
;�!0 +

�!
2
] and I+ = [!0 �

�!
2
; !0 +

�!
2
].

We de�ne

U
+
(!) =

�
U(!) for ! 2 I+

0 otherwise
(14)

U
�(!) =

�
U(!) for ! 2 I�

0 otherwise
(15)

Clearly, U(!) = U+(!) + U�(!).
For a given i 2 f1; : : : ;D(n;m)g we write ri = [r1; : : : ; rn�1],

and thus do not explicitly indicate the dependence of the el-
ements r1; : : : ; rn on i to simplify the notation. The DTFT
of u(k�r�) is U(!) exp(�j!r�), which is written as U

+
r� (!)+

U�r� (!) by de�ning U
+
r� (!) = U+(!) exp(�j!r�) and U

�

r� (!) =
U�(!) exp(�j!r�). Thus, we have

Vri (!) = U(!) � U(!) exp(�j!r1) � � � �

� U(!) exp(�j!rn�1)

= (U+(!) + U
�(!)) � (U+

r1 (!) + U
�

r1(!)) � � � �

� (U+
rn�1

(!) + U�rn�1 (!)) (16)

Distribute the convolution over addition to write

Vri (!) =

nX
l=0

Vri ;l(!) (17)

where Vri ;l(!) involves convolutions of l terms U+
rj (!) and

n� l terms U�rj (!). That is,

Vri;0(!) = U
�(!) � U�r1(!) � � � � � U

�

rn�1 (!)

Vri;1(!) = U
+(!) � U�r1 (!) � � � � � U

�

rn�1
(!) +

U
�(!) � U+

r1
(!) � U�r2 (!) � � � � � U

�

rn�1
(!) +

...

U
�(!) � U�r1(!) � � � � � U

�

rn�2
(!) � U+

rn�1
(!)

...

Vri;n(!) = U
+(!) � U+

r1 (!) � � � � � U
+
rn�1 (!) (18)

By grouping the terms in this manner, we may identify the
frequency band containing energy for each Vri ;l(!). Since
all terms in Vrj ;l(!) are a convolution of l terms from I+

and n�l terms from I�, Vri;l(!) has center frequency l!0+
(n� l)(�!0) = (2l � n)!0 and its energy is limited to the
frequency band

Il =

�
!0(2l � n)� n

�!

2
; !0(2l� n) + n

�!

2

�
(19)

as illustrated in Figure 1 (b) and (c) for n = 3 and n = 4,
respectively. The frequency bands Il overlap only if n�! �
2!0.

While the �lter Gri(!) may have nonzero response over
the entire interval [��; �], we need only consider its behav-
ior on the bands Il; l = 0; : : : ; n, so we de�ne

Gri;l(!) =

�
Gri (!) if ! 2 Il
\Don't care" Otherwise

(20)

Z -1

Z -1

Z -1

Z -1

Πn

l=0
Σ

Σ

l=n
Σ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

G

G

G

L.P.F.

n

u(k)

y (k)

0exp(-jω k)

(ω)

(ω)

(ω)

L.P.F.
u(k)

0k)exp(jω

u+

u-

(k)

(k)

exp(jω0(2l-n)k)

vr1,l=0(k)~

vr1,l=n(k)~

vr ,l=0(k)~
D(n,m)

vr ,l=n(k)~
D(n,m)

r1,0
~ (ω)G

r ,0
~

D(n,m)

r1,n
~

r ,n
~

D(n,m)

~

~

exp(jω0(2l-n)k)

Figure 2: Frequency band decomposition implemen-
tation.

We may now express the output of the system in terms of
output associated with each frequency band

Yn(!) =

nX
l=0

Yn;l(!) (21)

where

Yn;l(!) =

D(n;m)X
i=1

Vri ;l(!)Gri ;l(!) (22)

This decomposition explicitly indicates the e�ect of the
Volterra kernel on each frequency component of the output.
This representation is particularly useful where the nonlin-
ear e�ects on a limited number of frequency bands are of
interest, since then only a subset of the Yn;l(!) need be
evaluated. For example, in a communications system ap-
plication the nonlinear terms that occur in the vicinity of
the carrier frequency are of greatest concern, since the other
nonlinear terms can be eliminated by linear �ltering. This
decomposition also suggests an e�cient implementation for
the Volterra �lter.

3.2. E�cient Implementation via down-sampling

First note that the determination of Vri ;l(!) and �ltering
by Gri;l(!) may be performed in terms of baseband data
by frequency shifting the U+

rj (!) and U
�

rj (!) to center them
on DC. Denote the corresponding baseband time signals
as ~u+rj (k) and ~u�rj (k). By multiplying the appropriate set

of time signals ~u+rj (k) and ~u�rj (k), we obtain a baseband

version of vri;l(k), denoted as ~vri;l(k). Next, �lter ~vri;l(k)
with ~gri ;l(k), where ~gri ;l(k) = exp(�j(2l � n)!0k)gri ;l(k),
to obtain ~yn;l(k). Lastly, we obtain yn;l(k) by modulating
~yn;l(k) to the lth frequency band. That is,

yn;l(k) = exp(j(2l � n)!0k)~yn;l(k) (23)

The baseband implementation of the Volterra �lter is de-
picted in Figure 2. In summary, �rst the input is demod-
ulated, then a baseband version of the nonlinear system
associated with each frequency band is implemented and
these outputs are modulated back to the proper place in
the spectrum before combining them.



l=n

Πn

Σ

●

●

●

●

●

●

●

●

●

G

G

R

R

Σ

Σ

●

●

●

●

●

●

R

R

R

●

●

●

Z -1

Z -1

Z -1

L.P.F.

n

n/2
G

G

l=

1 2 3 4 5 6 7 8 9 10

u(k)

y (k)

cos(ω0

cos(ω0

(2l-n)k)

(2l-n)k)

1, n/2 (ω)r

rD(n,m), n/2 (ω)

r1,n(ω)

rD(n,m),n(ω)

cos(ω0k)

Figure 3: E�cient implementation via down-
sampling.

The highest frequency component of the baseband data
~vri;l(k) is at

n�!
2

. If n�!
2

� !0, then an e�cient imple-

mentation is obtained by down-sampling ~u+(k) and ~u�(k)
prior to computing the ~vri;l(k). By so doing, both the mul-
tiplications required to compute ~vri;l(k) and the �ltering by
~gri ;l(k) are performed at a lower data rate. Let R be the
down-sampling factor. We introduce the following notation
for the down-sampled data

v̂ri;l(k) = ~vri;l(kR) (24)

and down-sampled impulse response

ĝri;l(k) = ~gri ;l(kR) (25)

The frequency domain representation of (24) and (25) are
respectively

V̂ri ;l(!) =
~Vri;l(!=R) = Vri;l(!=R+ (2l� n)!0) (26)

and

Ĝri ;l(!) =
~Gri;l(!=R) = Gri;l(!=R+ (2l � n)!0) (27)

Additional e�ciencies are obtained if u(k) is real since
then U+(!) = (U�(!))� [3]. In this case have Vri ;l(!) =
(Vri ;n�l(!))

� and it su�ces to implement only one half of
the frequency bands, that is, we require calculation for only
Nbands =

�
n+1
2

�
frequency bands instead of n + 1 bands.

Further e�ciency is obtained if u(k) = x(k) cos(!0k) where
x(k) is real, since then ~u+(k) = ~u�(k). Note that this im-

plies ~vrj ;l(k), l =
�
n+1
2

�
; : : : ; n � 1 is a scalar multiple of

~vrj ;n(k), so only v̂rj ;n(k) needs to be calculated. Figure 3
depicts a down-sampled, baseband implementation for this
case. The steps labeled in Figure 3 are described as follows:
In step 2 the input is frequency shifted and then lowpass �l-
tered in step 3 to obtain a baseband signal corresponding to
the positive frequency component of the input. Each of the
time shifted baseband signals is downsampled in step 4 and
products of the downsampled signals formed to obtain the
D(n;m) v̂rj ;n(k)'s. Each v̂rj ;n(k) is then split into Nbands

and multiplied by the corresponding scale factor before be-
ing �ltered by the frequency shifted down-sampled impulse
responses ĝri;l(k) in step 6. Next, we sum the D(n;m) data
streams belonging to each frequency band and up-sample

(including interpolation) each of the Nbands bands. Lastly,
in step 9 each band is moved it into its proper position in
the spectrum, and the bands summed to obtain the overall
output.

3.3. Computational Complexity of Down-Sampled

Implementation

The reduction in computation a�orded by down-sampling is
obviously a function of the relative bandwidth, �!

!0
. Clearly,

there is a relative bandwidth for which the savings incurred
by the lower sampling rate outweigh the overhead needed
to down-sample, up-sample and separate into di�erent fre-
quency bands. For purposes of comparison we consider the
case where u(k) = x(k) cos(!0k + �) with x(k) real. It is
straight forward to generalize these results to complex val-
ued x(k) or u(k) although somewhat more tedious. We use
real multiplications per sample as the standard of compu-
tational complexity. The computational complexity is not
only a function of the kernel parameters and relative band-
width, but also depends on the length of the low pass and
interpolation �lters. Whenever a generic low pass �lter is
needed we assume an equiripple linear phase FIR �lter with
a stop-band ripple �1 = 0:01 and passband ripple �2 = �1.
This gives 40 dB of stop-band attenuation. The �lter length

is estimated using Bellanger's formula as
2 log10(

10

�1�2
)

3�f
, where

�f =
!stop�!pass

2�
. As before, we assume 2� = n(2!0+�!).

After splitting into frequency bands and down-sampling,
the length of each gri ;l(k) should decrease, on average, by

a factor of R. Let N̂length denote the average �lter length

of ĝri ;l(k). We shall bound N̂length as maxf1; Nlength=Rg '

N̂length < Nlength.

We now proceed counting the multiplies associated with
each of the stages de�ned in the previous subsection. One
multiplication per sample is necessary in step 2. In step
3 we implement a generic low pass �lter with !pass =
�!
2
, !stop = 2!0 �

�!
2
. This implies the �lter length is

2n(2!0 + �!)=(2!0 � �!). Assuming �! � !0 gives a
�lter length of approximately 2n. Hence, implementing
this �lter in the time domain requires 2n real multiplica-
tions. Note that the output of this stage is x(k), which is
real. At stage 4 we assume that R is an integer and thus
no multiplications are required at this stage. Notice that
from here until stage 8 the computations are performed
at the lower sampling rate. In stage 5 we must generate
D(n;m) output streams v̂ri;n(k). The number of multi-
plications per sample required to calculate these nth or-
der products is shown to be approximately 2D(n;m) in [3].
Hence, 2D(n;m)=R multiplications are required per output
sample. Next we implement NbandsD(n;m) �lters of av-

erage length N̂length. Hence, there are
D(n;m)NbandsN̂length

R

multiplications required per output sample at stage 6.
There are Nbands up-samples at stage 8 that each re-

quire an interpolation �lter. Assuming a generic low pass
�lter with !pass = n�!

2
, !stop = 2�

R
� n�!

2
we obtain a

�lter length of
2 log10 10

5

3�f
= 20�R

3(2��n�!R)
. Thus, there are

Nbands
20�R

3(2��n�!R)
multiplications per sample. Note that

there is a tradeo� between interpolation �lter length and
the down-sampling rate. As R increases, the required in-



terpolation �lter length increases. It is convenient to ex-
press this tradeo� in a slightly di�erent form. Clearly,
R < 2�

n�!
so let R = K 2�

n�!
where 0 < K < 1. Since 2� =

n(2!0 + �!), we have R = K 2!0+�!

�!
. Let Q = �!

2!0+�!

denote the baseband system fractional bandwidth so that
R = K

Q
. Thus, the interpolation �lter length is 10K

3(1�K)Q
.

The number of real multiplications required for this stage
is Nbands

10K
3(1�K)Q

. Lastly, there are Nbands multiplications

per sample associated with stage 9.
Thus, combining each stage, the total number of multi-

plications per sample for the down-sampled implementation
is

Mdown = 1+ 2n+
D(n;m)Q

K
(2 +NbandsN̂length)

+Nbands
10K

3(1�K)Q
+Nbands (28)

We now determine theK that minimizes the number of mul-
tiplications by setting the derivative of (28) with respect to

K to zero. De�ne P =
q

10Nbands

3D(n;m)(2+NbandsN̂length)
. Hence,

the minimal number of multiplications per sample is

Mdown = 1 + 2n+D(n;m)(Q+ P )(2 +NbandsN̂length)

+Nbands

�
10

3P
+ 1
�

(29)

Recall that the number of multiplications per sample for
a traditional serial implementation without down-sampling
is Mserial = D(n;m)(2 +Nlength). Thus, the ratio of down-
sampling to traditional implementation multiplications is

Mdown

Mserial

=
�
1 + 2n +D(n;m)(Q+ P )(2 +NbandsN̂length)

+Nbands (10=3P + 1))

= (D(n;m) (2 +Nlength)) (30)

We may obtain an upper bound on Mdown

Mserial

by assuming

N̂length = Nlength, and a conservative lower bound by set-

ting N̂length = maxf1; Nlength=Rmaxg = maxf1;NlengthQg.

This lower bound is conservative since we assumed N̂length

was independent of K when �nding the optimum K.
It is di�cult to intuitively assess the relative computa-

tional complexity directly from (30), so we o�er represen-
tative examples in which the relative computational com-
plexity is evaluated numerically. Figures 4 a) and b) de-

pict the upper and lower bounds on Mdown

Mserial

for a third and

�fth order kernel, respectively, as a function of memory m

assuming several di�erent fractional bandwidths Q. As ex-
pected, the relative advantage of the down-sampling imple-
mentation increases as both the memory increases and the
fractional bandwidth decreases. The down-sampling imple-
mentation is always advantageous for fractional bandwidths
less than one-half and modest memory lengths. Note that
a greater complexity reduction is obtained with the �fth or-
der system than the third order system with small fractional
bandwidths.

4. CONCLUSIONS

A diagonal coordinate representation for Volterra �lters is
exploited to develop e�cient Volterra �lter implementations

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

m

M
ds

/M
se

ria
l

(a)

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

m

M
ds

/M
se

ria
l

(b)

Figure 4: Ratio of number of multiplications of down-
sampled implementation over serial implementation
as function of m for several values of Q.
� - Q = 1

2
. � - Q = 1

5
. + - Q = 1

100
.� - Q = 1

1000000
.

Solid line - Upper bound. Dashed line - Lower bound.
a) n = 3. b) n = 5.

for processing carrier based input signals. The diagonal
coordinate representation expresses the output as a sum
of linear �lters applied to modi�ed input sequences. This
linear relationship illustrates the relationship between the
kernels and the output spectrum. It also allows use of stan-
dard linear �ltering techniques. The e�cient implementa-
tion of systems with carrier based inputs are obtained by
performing �ltering on baseband signals. The relative com-
putational complexity of the baseband implementation is
proportional to the signal's fractional bandwidth.

A. REFERENCES

[1] G. Lazzarin, S. Pupolin, and A. Sarti, \Nonlinearity
compensation in digital radio systems," IEEE Trans.

Comm., vol. 42, pp. 988-998, 1994.

[2] J. C. Peyton and S. A. Billings, \Describing functions,
Volterra series, and the analysis of nonlinear systems
in frequency domain" Int. J. Control, 1991, Vol. 53,
no. 4, pp. 871-887.

[3] G. M. Raz, B. D. Van Veen, \Baseband Volterra �lters
for implementing carrier based nonlinearities," IEEE

Trans. Signal Proc., Submitted, 1997.

[4] A.A.M. Saleh and J. Salz, \Adaptive linearization of
power ampli�ers in digital radio systems," Bell Syst.

Tech. J., vol. 62, pp. 1019-1033, 1983.

[5] M. Schetzen, The Volterra and Wiener Theories of

Nonlinear Systems. New York: Wiley, 1980.


