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ABSTRACT

We consider causal time-invariant nonlinear input-

output maps that take a set of bounded functions into a

set of real-valued functions, and we give criteria under

which these maps can be uniformly approximated arbi-

trarily well using a certain structure consisting of a not-

necessarily linear dynamic part followed by a nonlinear

memoryless section that may contain sigmoids or radial

basis functions, etc. As an application of the results,

we show that system maps of the type addressed can

be uniformly approximated arbitrarily well by doubly-

�nite Volterra-series approximants if and only if these

maps have approximately-�nite memory and satisfy cer-

tain continuity conditions. Corresponding results have

also been obtained for (not necessary causal) multivari-

able input-output maps. Such multivariable maps are

of interest in connection with image processing.

1. INTRODUCTION

Results concerning the representation and approxi-

mation of nonlinear maps can be of particular interest

in connection with a variety of engineering problems.

In [1] there began a study of the network (e.g., neural

network) approximation of functionals and approximately-

�nite-memory maps. It was shown that large classes of

approximately-�nite-memory maps can be uniformly

approximated (i.e., uniformly approximated arbitrar-

ily well) by the maps of certain simple nonlinear struc-

tures using, for example, sigmoidal nonlinearities or ra-

dial basis functions.1 This is of interest in connection

with, for example, the general problem of establish-

ing a comprehensive analytical basis for the identi�ca-

tion of dynamic systems.2 The approximately-�nite-

1It was later found [2] that the approximately-�nite-memory

condition is met by the members of a certain familiar class of

stable continuous-time systems.
2It was also observed that any continuous real functional on

a compact subset of a real normed linear space can be uniformly

approximated using only a feedforward neural network with a

memory approach in [1] is di�erent from, but is re-

lated to, the fading-memory approach in [6] where it is

proved that certain scalar single-variable causal fading-

memory systems with inputs and outputs de�ned on IR

or on ( : : : ;�1; 0; 1; : : : ) can be approximated by a �-

nite Volterra series.

The study in [1] addresses noncausal as well as causal

systems, and also systems in which inputs and out-

puts are functions of several variables. In recent pa-

pers [7, 8] strong corresponding results are given within

the framework of an extension of the fading-memory

approach. We use the term \myopic" to describe the

maps we study because the term \fading-memory" is a

misnomer when applied to noncausal systems, in that

noncausal systems may anticipate as well as remember.

Roughly speaking, an input-output map K is myopic if

the value of (Ku)(
) is always relatively independent

of the values of u at points remote from 
: [The con-

cepts of maps that are myopic, have approximately-

�nite memory, fading memory [6], or decaying mem-

ory [9] are all di�erent but are all related in that they

are alternative ways of making precise, in di�erent set-

tings, the same general idea. There is also a history of

the use of this idea in other areas and for purposes other

than approximation (see, for example, [10],[11],[12],[13]).]

In [8], as well as in [6, 7] and other papers, attention

centers around properties of nonlinear approximation

structures of the type indicated in Figure 1 in which

the box labeled N is a memoryless nonlinear system

and the hj denote linear maps. This is a structure

consisting of a linear preprocessing stage followed by a

memoryless nonlinear network. As mentioned earlier,

such structures were �rst considered in an important

linear-functional input layer and one hidden memoryless nonlin-

ear (e.g., sigmoidal) layer. This has applications concerning, for

instance, the theory of classi�cation of signals, and is a kind of

general extension of an idea due to Wiener concerning the ap-

proximation of input-output maps using a structure consisting of

a bank of linear maps followed by a memoryless map with several

inputs and a single output (see, for instance, [3, pp. 380-382]).

For related results, see [4] and [5].
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Figure 1: Approximation structure.

but very special context by Wiener. Roughly speak-

ing, the main result in [8] is that, with N containing

sigmoids, or radial basis functions, etc., a given shift-

invariant input-output map K can be uniformly ap-

proximated over a certain set U of inputs if and only if

K is myopic, assuming that the linear maps represented

by the hj satisfy certain conditions. A corresponding

result for a di�erent type of input set is given in [7].

In this paper attention is focused on the hj . We con-

sider causal time-invariant input-output maps G that

take a set S of bounded vector-valued functions into

a set of real-valued functions, and we give conditions

on the hj under which these G's can be uniformly ap-

proximated arbitrarily well using the structure shown

in Figure 1. In our results certain separation condi-

tions, of the kind associated with the Stone-Weierstrass

theorem, play a prominent role. Here they emerge as

criteria for approximation, and not just su�cient con-

ditions under which an approximation exists. As an

application of the results, we show that system maps

of the type addressed can be uniformly approximated

arbitrarily well by doubly-�nite Volterra-series approx-

imants if and only if these maps have approximately-

�nite memory and satisfy certain continuity conditions.

By such an approximant we mean one of the form

pX
j=1

nX
nj=0

: : :

nX
n1=0

kj(n� n1; : : : ;

n� nj)s(n1) � � � s(nj)

in which p is �nite and there is a number � such that

for each j kj(n1; : : : ; nj) vanishes if one or more of the

n1; : : : ; nj exceed � (which implies that the approxi-

mant has �nite memory). Corresponding results { not

presented here because of length restrictions { have also

been obtained for (not necessary causal) multivariable

input-output maps. Such multivariable maps are of in-

terest in connection with image processing.

Our results are given in the next section, which be-

gins with a section on preliminaries. As we have said, in

these results certain separation conditions, of the kind

associated with the Stone-Weierstrass theorem, play a

prominent role but here they emerge as criteria for ap-

proximation, and not just su�cient conditions under

which an approximation exists. In particular, a corol-

lary of one of our main results in the next section is a

theorem to the e�ect that universal approximation can

be achieved using the structure of Figure 1 if and only if

the set H from which the hj are drawn satis�es the sep-

aration condition that for each n : (hu1)(n) 6= (hu2)(n)

for some h 2 H whenever u1; u2 2 S and u1(j) 6= u2(j)

for at least one j � n.. This holds even if the elements

of H are not linear. For a related result in the context

of \complete memories," see [14] (see also [4, Theorem

4] and [15]).

2. APPROXIMATION OF INPUT-OUTPUT

MAPS

2.1. Preliminaries

The linear-ring operations starting with a set of real

numbers consist of the linear operations and multiplica-

tion. That is, these operations consist of ordinary addi-

tion, multiplication, and multiplication by real scalars,

with the understanding that operations may be per-

formed only on numbers in the starting set and/or num-

bers that have been formed from the starting set. Let k

be a positive integer. We say that a map M : IRk ! IR

is a linear-ring map if Mv is generated from the com-

ponents v1; : : : ; vk of v by a �nite number of linear ring

operations that do not depend on v. Let L(IRk; IR)

stand for the set of all linear-ring maps from IRk to IR.

We view the elements of IRk as row vectors.

Let C(IRk; IR) denote the set of continuous maps

from IRk to IR, and let Dk stand for any subset of

C(IRk; IR) that is dense in L(IRk; IR) on compact sets,

in the sense that given � > 0 and f 2 L(IRk; IR), as

well as a compact K � IRk, there is a g 2 Dk such

that jf(v)� g(v)j < � for v 2 K. The Dk can be

chosen in many di�erent ways, and may involve, for

example, radial basis functions, polynomial functions,

piecewise linear functions, sigmoids, or combinations of

these functions.3

Let d be a positive integer, and let C stand for any

bounded closed subset of IRd that contains the origin

of IRd. For example, C can be chosen to be fv 2 IRd :

kvk � 
g where k � k is any norm on IRd and 
 is a

positive constant. With Z+ =: f0; 1; : : :g, let S denote

3The termDk is used also in, for example, [7] where the mean-

ing is di�erent. Here the conditions on the Dk are even less

restrictive.



the family of all maps s from Z+ to C. The set S is our

set of inputs.

For each � and � in Z+, let maps W�;� : S ! S

and T� : S ! S be de�ned by

(W�;�s)(n) =

�
s(n); � � � � n � �

0; otherwise

and

(T�s)(n) =

�
0; n < �

s(n� �); n � �
:

We say that a map M from S into the set of real-

valued functions on Z+ is time-invariant if for each

� 2 Z+ we have

(MT�s)(n) =

�
0; n < �

(Ms)(n� �); n � �

for all s. M is causal if (Mu)(n) = (Mv)(n) whenever

n 2 Z+ and u and v satisfy u(�) = v(�) for � � n.

Throughout the paper, G denotes a causal time-

invariant map from S to the set of real-valued functions

de�ned on Z+. We assume that G has approximately-

�nite memory in the sense that given � > 0 there is an

� 2 Z+ such that

j(Gs)(n) � (GWn;�s)(n)j < �; n 2 Z+

for s 2 S.4

For each n 2 Z+, let cn stand for f0; 1; : : : ng, and
let Sn denote the restriction of S to cn. We view

each Sn as a metric space with metric �n de�ned by

�n(x; y) = max f kx(j)� y(j)k : j 2 cn g.
Let H be a family of time-invariant causal maps h

from S to the set of IR-valued functions de�ned on Z+,

and for each h and each n in Z+ de�ne the functional

q(h; n; �) on Sn by q(h; n; u) = (hs)(n), where s is any

element of S whose restriction to cn is u. We assume

that q(h; n; �) is continuous for each h 2 H . We also

assume that H is closed under the memory-limiting

operation, in the sense that g de�ned on S by (gs)(n) =

(hWn;�s)(n) belongs to H whenever h 2 H and � 2
Z+.

5

As an example, we can take H to be the set H0 of

all maps h for which

(hs)(n) = �[

nX
j=0

s(j)a(n� j) ]; n 2 Z+ (1)

where �, which depends on h, is a continuous map from

IR into IR with �(0) = 0, and a, which also depends on

4There is a slight di�erence here relative to the de�nition of

approximately-�nite memory in [1] where � is required to be

positive.
5In this connection, it is not di�cult to check that g de�ned

above is causal and time invariant for h 2 H and � 2 Z+.

h, is real d� 1 matrix valued with a(j) the zero d � 1

matrix for j su�ciently large. As another example,

note that H can be taken to be any subset of H0 that

is closed under the memory-limiting operation.

For each n 2 Z+, let Fn denote the functional de-

�ned on Sn by Fnu = (Gs)(n), where s is any element

of S whose restriction to cn is u. We shall use A.1 to

denote the following condition:

For each n 2 Z+ and each (u1; u2) 2 En there is

an h 2 H such that q(h; n; u1) 6= q(h; n; u2),

in which

En = f(u1; u2) 2 Sn � Sn : Fnu1 6= Fnu2g.

2.2. Approximation and Discrete-Time Systems

One of our main results is the following.

Theorem 1: The following two statements are equiv-

alent.

(i) For each � > 0, there are an � 2 Z+, a positive

integer k, elements h1; : : : ; hk of H , and an N 2
Dk such that

j(Gs)(n)�N [(MWn;�s)(n)]j < �; n 2 Z+

for all s 2 S, where

(Ms)(n) = [(h1s)(n); : : : ; (hks)(n)]:

(ii) Each Fn is continuous and A.1 is met.

The proof makes use of the following lemma, but

the remaining details are omitted in this version of the

paper.

Lemma 1: Let A be a compact topological space,

let f belong to the set C of all continuous real-valued

functions on A, and let B be a subset of C. Suppose

that there is an element a of A such that f(a) = 0 and

b(a) = 0 for b 2 B. Then statements 1) and 2) below

are equivalent.

1) For each � > 0 there are a positive integer k,

elements b1; : : : ; bk of B, and an N 2 Dk such

that jf(x) � N [B(x)]j < � for x 2 A, where

B(x) = [(b1)(x); : : : ; (bk)(x)].

2) For (x1; x2) 2 f(x1; x2) 2 A�A : f(x1) 6= f(x2)g
there is a b 2 B such that b(x1) 6= b(x2).



Our next result is a corollary of Theorem 1. It fo-

cuses attention on the conditions required of the pre-

processing stage represented by the hj in Figure 1 so

that universal approximation is achieved. We �nd that

a separation condition is the key condition.

Theorem 2: Let G be the set of all time-invariant

causal approximately-�nite-memory maps G from S to

the set of real-valued functions on Z+ such that each

associated functional Fn is continuous. Then (i) of The-

orem 1 holds for each G 2 G if and only if for every n

the q(h; n; �) separate the points of Sn. [i.e., if and only

if q(h; n; u1) 6= q(h; n; u2) for some h 2 H whenever

u1; u2 2 Sn and u1 6= u2].

The proof is omitted in this version of the paper.

2.3 Comments

For a given G the condition of Theorem 1 that A.1

be met can be much less restrictive than the separation

condition of Theorem 2. For instance, suppose that G

is the zero map [i.e., suppose that (Gs)(n) = 0 for all

s and n ]. Then each En is empty and A.1 imposes no

restrictions on H , as one would expect.

Using the closure of H under the memory-limiting

operation, a check of the omitted proof of Theorem

1 shows that Statement (i) is equivalent to: For each

� > 0, there are a positive integer k, elements h1; : : : ; hk
of H , and an N 2 Dk such that

j(Gs)(n)�N [(Ms)(n)]j < �; n 2 Z+

for all s 2 S, where (Ms)(n) = [(h1s)(n); : : : ; (hks)(n)].

The conditions of Statement (ii) of Theorem 1 can

be expressed in other ways. For example, using the

causality of G, it is not di�cult to check that the con-

dition that each Fn is continuous is equivalent to the

condition that each functional G(�)(n) is continuous

with respect to the metric on S given by �(x; y) =

sup f kx(j)� y(j)k : j 2 Z+g. As another example,

the statement that each each Fn is continuous contains

redundancy in the sense that, by the time-invariance of

G, if n1 and n2 are elements of Z+ such that n2 > n1
then the continuity of Fn2 implies the continuity of Fn1 .

Similarly, and concerning A.1 (and this time by the

time-invariance of G and the elements of H), if the fol-

lowing holds for n = n2 and n2 > n1 then it holds for

n = n1.

For each (u1; u2) 2 En there is an h 2 H such

that q(h; n; u1) 6= q(h; n; u2),

in which

En = f(u1; u2) 2 Sn � Sn : Fnu1 6= Fnu2g.

In applications it is often possible to choose H so

that its elements are linear and A.1 is met. However,

for a given degree of approximation (i.e., for a given

�) a much lower overall degree of complexity of the

approximation structure can sometimes result if H is

allowed to contain relatively simple elements that are

not linear. As an example of how H can be chosen,

let H00 stand for the subset of H0 (of Section 2.1) con-

taining only the members for which the functions � are

strictly monotone increasing. Given n as well as u1 and

u2 in Sn such that u1 6= u2, choose h 2 H00, so that

it is given by (1) with a(n � j) = (u1 � u2)(j)
tr for

j = 1; : : : ; n. Then

nX
j=0

(u1 � u2)(j)a(n� j) 6= 0

and so, by the strict monotonicity of the �'s, q(n; h; u1)

6= q(n; h; u2). This shows that A.1 is always met for for

H = H00.

Now assume that H = H00 with the �'s linear, and

assume also that the Dk are linear-ring maps. Let Q

denote the approximating map of Theorem 1 given by

(Qs)(n) = N [(MWn;�s)(n)], and let h 0

1; : : : ; h
0

k be el-

ements of H such that (h 0

js)(n) = (hjWn;�s)(n) Con-

sider the d = 1 case. By writing products of sums as

iterated sums, it is not di�cult to see that (Qs)(n) has

the form
pX

j=1

nX
nj=0

: : :

nX
n1=0

kj(n� n1; : : : ;

n� nj)s(n1) � � � s(nj) (2)

in which p is a positive integer, and each kj(n�n1; : : : ;
n�nj) is a �nite linear combination of products of the

form a 0

ij(1)
(n�n1)a

0

ij (2)
(n�n2) � � � a

0

ij(j)
(n�nj), where

the indices ij(1); : : : ; ij(j) are drawn from f1; : : : ; kg
and each a 0

i is the kernel (i.e., discrete impulse re-

sponse) associated with h 0

i . Note that each kj vanishes

whenever one or more of its arguments exceed �.

Expression (2) is a doubly-�nite Volterra series ap-

proximant for G in the sense that p is �nite and each

kj vanishes if at least one of its arguments is su�-

ciently large in the sense indicated (which of course

has the interpretation that the approximants have �-

nite memory).6 Let M stand for the set of all causal

time-invariant maps from S to the real-valued func-

tions de�ned on Z+, and let V denote the family of

all members of M that have a representation of the

form (2) for some p and some k1; : : : ; kp with each

kj(n1; : : : ; nj) = 0 when one or more of the n1; : : : ; nj

6For early studies and other references concerning Volterra-

series representations, see [16] and [3].



exceeds some number �. We have just seen that suf-

�cient conditions for a member of M to be uniformly

approximated arbitrarily well by an element of V are

that the member possesses approximately-�nite mem-

ory and that its corresponding Fn functionals are con-

tinuous. In the full-length version of the paper we show

that these conditions are in fact necessary.

The methods we have used can be employed to

obtain corresponding results for other types of input-

output maps. A particularly important case is the one

in which inputs and outputs are real-valued functions of

a �nite number of integer-valued variables. This case is

of interest in connection with, for example, image pro-

cessing. We consider this case in the full-length version

of this paper where a large class of myopic maps are

the focus of attention. As an application, we give a cri-

teria in this multivariable setting for the existence of

arbitrarily good doubly-�nite Volterra series approxi-

mations.
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