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ABSTRACT

We consider stability properties of discrete-time bi-
linear �lters. Simple su�cient conditions are given for
bounded-input bounded-output stability (with not nec-
essarily zero initial conditions), lp stability, and three
other important types of stability. In particular, condi-
tions are given under which asymptotically periodic in-
puts produce asymptotically periodic outputs with the
same period. Related results are given for quadratic
�lters.

1. INTRODUCTION

Bilinear system models arise in a variety of problem
settings in the �elds of engineering, biology, and eco-
nomics [1, 2], and it is known [3] that a large class of
input-output maps can be realized by state-space bilin-
ear systems. In particular, bilinear systems { together
with natural questions concerning their advantages and
limitations { are of current interest in connection with
signal processing because of the limitations of linear
�lters.

In this paper we consider the discrete-time \bilinear
�lter", whose output y(0); y(1); : : : satis�es the di�er-
ence equation

y(n) =

NX
i=0

aiu(n� i) +

NX
i=1

biy(n� i)+

NX
i=0

NX
j=1

ci;ju(n� i)y(n� j); n � 0 (1)

in which the ai; bi, and ci;j are real coe�cients, u(0);
u(1); : : : is the input sequence, y(�N); : : : ; y(�1) and
u(�N); : : : ; u(�1) are initial values, and N is a posi-
tive integer. The initial values and the elements of the
input and output sequences are real numbers. In [4] it
is shown that the input-out maps of the members of

a large class of single-input single-output bilinear sys-
tems described by state-space equations are governed
by an equation of the form (1).

There are many worthwhile questions that can be
asked about the way in which (1) takes inputs into out-
puts. For example, it is of interest to know conditions
under which bounded inputs produce bounded outputs.
One such set of conditions is given in [5], but one of the
conditions there is that all of the initial values of the
output are zero. In this paper we show that the condi-
tion concerning initial values is not needed. More im-
portantly, in Section 2 we give simple conditions under
which (1) has the additional stability properties that

(i) If 1�p<1 and the input sequence belongs to the
set lp (see Section 2.1), then the output sequence
also belongs to lp.

(ii) u(n)! 0 as n!1 implies y(n)! 0 as n!1.

(iii) y1(n) � y2(n) ! 0 as n ! 1 whenever u1(n) �
u2(n)! 0 as n!1, where y1 is the output cor-
responding to the input u1, and y2 is the output
corresponding to the input u2.

(iv) If u is asymptotically periodic with some period
T , by which we mean that u(n) = up(n) + u0(n)
for n � 0, where up(n) = up(n + T ) for n � 0
and u0(n) ! 0 as n ! 1, then the output y is
asymptotically periodic with period T .

Related results are given in the appendix for quadratic
�lters. Results of this kind contribute to the construc-
tion of an analytical basis for the use of nonlinear �lters.

2. BILINEAR FILTER STABILITY

RESULTS

2.1. Notation, De�nitions, and an Assumption

Let S denote the set of real sequences s(0); s(1); : : : .
For 1�p<1, let lp be the subset of all such sequences



s such that
P1

n=0 js(n)j
p < 1. The usual lp norm

is denoted by k � klp . We use l1 to denote the set of
bounded elements of S, and k � k1 stands for the usual
sup norm.

Let Z�1 denote inverse z-transform operator de-
�ned on the set of z-transforms of z-transformable ele-
ments of S.

Throughout Section 2 we assume that
(1 �

PN

i=1 biz
�i) 6= 0 for jzj � 1. This means that we

are assuming the stability in a standard sense of the
system governed by (1) when ci;j = 0 for 0 � i � N

and 1 � j � N .

In our results, Theorems 1{4 below, we refer to a
set U . This set is described as follows. Given a v 2 S

together with real numbers v(�N); : : : ; v(�1), we say
that (v; v(�N); : : : ; v(�1)) belongs to U if

khkl1 � sup
k ��N

jv(k)j �

NX
i=0

NX
j=1

jci;j j < 1 (2)

where h := Z�1
n
(1�

PN

i=1 biz
�i)�1

o
. Of course when

(u; u(�N); : : : ; u(�1)) 2 U , (2) gives a bound on the
magnitude of the elements of the input sequence and
the magnitude of the corresponding initial conditions. 1

Proofs are omitted in this paper.

2.2. Results

In order to simplify the statement of Theorem 1 we
de�ne constants � and � as follows:

� = khkl1 � sup
k ��N

ju(k)j �

NX
i=0

jaij+ rkhkl1 �

sup
k ��N

ju(k)j �

NX
i=0

NX
j=1

jci;j j+ kIk1

and

� = khkl1 � sup
k ��N

ju(k)j �

NX
i=0

NX
j=1

jci;j j

where I is the inverse z-transform of0
@ NX

i=1

i�1X
j=0

biz
�jy(j � i)

1
A �

 
1�

NX
i=1

biz
�i

!�1

and r = supk=1;:::;N fjy(�k)jg.

1h 2 l1 by our assumption that (1�
P

N

i=1
biz
�i) 6= 0 for

jzj � 1.

Theorem 1: Assume that (u; u(�N); : : : ; u(�1)) be-
longs to U , and suppose that y(0); y(1); : : : satisfy (1).

Then jy(n)j � � (1� �)
�1

; n � 0:

This theorem gives conditions under which bounded
inputs in (1) produce bounded outputs. It tells us that
the output is bounded whenever u 2 `1 and

khkl1 � kuk1 �

NX
i=0

NX
j=1

jci;j j < 1:

The theorem yields the result given in [5] which con-
cerns the case in which the initial values of the output
are zero.2

Theorem 2: Assume that (u; u(�N); : : : ; u(�1)) be-
longs to U , let y(0); y(1); : : : satisfy (1), and let p � 1.
Then u 2 lp implies that y 2 lp.

Now we consider the outputs that correspond to
input sequences u1 and u2 whose di�erence converges
to zero. In the following theorem, S0 stands for the set
of elements of S that converge to zero.

Theorem 3: Let sequences y1(0); y1(1); : : : and
y2(0); y2(1); : : : be given by

y1(n) =

nX
k=0

h(n� k)

NX
i=0

aiu1(k � i)+

nX
k=0

h(n� k)

NX
i=0

NX
j=1

ci;ju1(k � i)y1(k � j) + z1(n)

and

y2(n) =

nX
k=0

h(n� k)

NX
i=0

aiu2(k � i)+

nX
k=0

h(n� k)

NX
i=0

NX
j=1

ci;ju2(k � i)y2(k � j) + z2(n)

for n � 0, where (u1; u1(�N); : : : ; u1(�1)) and (u2;
u2(�N); : : : ; u2(�1)) belong to U , and z1; z2 2 S0.
Then u1(n)�u2(n)! 0 as n!1 implies that y1(n)�
y2(n)! 0 as n!1.

Regarding our bilinear system (1), and using a re-
lation in the omitted proof of Theorem 1, Theorem 3
gives conditions under which the di�erence y1 � y2 of
two output sequences converges to zero whenever the
di�erence u1 � u2 of the two corresponding input se-
quences converges to zero. Since y2(n) ! 0 as n! 1

2More precisely, our theorem provides a somewhat stronger

result even for that case.



when u2 is the zero sequence, we also have the follow-
ing.

Corollary: Regarding (1), suppose that
(u; u(�N); : : : ; u(�1)) belongs to U . Then u 2 S0 im-
plies that y 2 S0.

3

Now we consider inputs to our bilinear system (1)
that are asymptotically periodic. Let T be a positive
integer.

Theorem 4: Consider (1). Suppose that
(u; u(�N); : : : ; u(�1)) belongs to U , and that u(n) =
up(n) + u0(n); n � 0 where up(n) = up(n+ T ); n � 0
and u0(n)! 0 as n!1. Then the output y satis�es
y(n) = yp(n) + y0(n); n � 0 where yp(n) = yp(n +
T ); n � 0 and y0(n)! 0 as n!1.

In other words, when (u; u(�N); : : : ; u(�1)) belongs
to U , asymptotically periodic inputs produce asymp-
totically periodic outputs with the same period.

2.3. Quadratic Filters

The techniques used in our omitted proofs are useful
also in connection with related problems that are \more
nonlinear." In particular, related results are given in
the appendix for the discrete-time \quadratic �lter"
whose output y(0); y(1); : : : satis�es

y(n) =

NX
i=0

aiu(n� i) +

NX
i=1

biy(n� i)+

NX
i=1

NX
j=1

ci;jy(n� i)y(n� j); n � 0 (3)

in which the ai; bi, and ci;j are real coe�cients, u(0);
u(1); : : : is the input sequence, y(�N); : : : ; y(�1) and
u(�N); : : : ; u(�1) are initial values, andN is a positive
integer. The initial values and the elements of the input
and output sequences are real numbers, as in (1). In [7]
conditions are presented under which bounded inputs
to quadratic �lters produce bounded outputs.4 There
too it is assumed that the initial values of the out-
put are zero. This is a signi�cant restriction, because
it leaves open the possibility that the �lter might not
be bounded-input bounded-out stable for even nonzero

3Another result along these lines is this: Under the hypothe-

ses of the corollary, y(n) approaches a �nite limit as n ! 1

whenever u(n) approaches a limit as n!1. This follows from

a direct modi�cation of the proof of Theorem 3, using the fact

that the set of elements x of `1 such that x approaches a limit

is a closed subset of `1.
4There is a di�erence between (5) and the model in [7]. There

ai = 0 for i > 1. We have added the additional terms because

their presence leads to a more useful �lter.

initial values that are arbitrarily small in magnitude.
In the appendix we show that the condition concern-
ing initial values is not needed, in the sense that small
values of the magnitudes of the initial conditions can
be accommodated by making a small reduction in the
bound on the allowed inputs. More importantly, in the
appendix we give simple conditions (on the coe�cients,
inputs, and initial values) under which (3) has the ad-
ditional stability properties that (ii), (iii), and (iv) of
Section 1 are met.
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4. APPENDIX: QUADRATIC FILTER

STABILITY RESULTS

4.1. Notation, De�nitions, and Assumptions

Throughout this appendix S, l1, l1, and Z�1 are
as described in Section 2.1.

Here too we assume that (1�
PN

i=1 biz
�i) 6= 0 for

jzj � 1. This means that we are assuming the stability
in a standard sense of the system governed by (3) when
ci;j = 0 for all i and j. Also, assume that ai 6= 0 for
some i and that ci;j 6= 0 for some i and some j. In the
interest of simplicity later, let

� :=

 
khkl1 �

NX
i=1

jaij

!�1

and let � be any positive number such that

� <

0
@khkl1 � NX

i=1

NX
j=1

jci;j j

1
A
�1

where h := Z�1
n
(1�

PN

i=1 biz
�i)�1

o
. 5

Let 
 be any extended real number such that

 > 4. In two of our results, Theorems 5 and 7 below,
we refer to sets Y and U . The set Y is the set of
(y(�N); : : : ; y(�1)) such that kIk1 � �=
 and

jy(k)j �
1

2
� for k = �N; : : : ;�1;

where

I = Z�1

8<
:
0
@ NX

i=1

i�1X
j=0

biz
�jy(j � i)

1
A �

 
1�

NX
i=1

biz
�i

!�19=
; :

The condition that (y(�N); : : : ; y(�1)) 2 Y is satis-
�ed for any 
 > 4 for su�ciently small jy(�N)j; : : : ;
jy(�1)j.

The set U is described as follows. Given a v 2 S

together with real numbers v(�N); : : : ; v(�1), we say
that (v; v(�N); : : : ; v(�1)) belongs to U if

sup
k ��N

jv(k)j � (
1

4
�

1



) � �: (4)

Of course when (u; u(�N); : : : ; u(�1)) 2 U , (4) gives
a bound on the magnitude of the elements of the in-
put sequence and the magnitude of the corresponding
initial conditions.

5As in Section 2.1, h 2 l1 by our assumption that (1 �P
N

i=1
biz
�i) 6= 0 for jzj � 1.

4.2. Results

Theorem 5: Assume that (u; u(�N); : : : ; u(�1)) be-
longs to U , that (y(�N); : : : ; y(�1)) belongs to Y , and
that y(0); y(1); : : : satis�es (3). Then jy(n)j � 1

2
� for

all n � 0:

This theorem gives conditions under which bounded
inputs in (3) produce bounded outputs.

An inspection of the omitted proof 6 shows that the
theorem holds also if � is described instead by

� =

0
@khkl1 �

NX
i=1

NX
j=1

jci;j j

1
A
�1

:

This is the case we have in mind in Section 2.3 in our
comparison with the result in [7].7

Now we consider the outputs that correspond to
input sequences u1 and u2 whose di�erence converges
to zero. In the following theorem, and as in Section 2.2,
S0 stands for the set of elements of S that converge to
zero.

Theorem 6: Let sequences y1(0); y1(1); : : : and y2(0);
y2(1); : : : satisfy

y1(n) =

nX
k=0

h(n� k)

NX
i=0

aiu1(k � i) +

nX
k=0

h(n� k)

NX
i=1

NX
j=1

ci;jy1(k � i)y1(k � j) +

z1(n); n � 0 (5)

and

y2(n) =

nX
k=0

h(n� k)

NX
i=0

aiu2(k � i) +

nX
k=0

h(n� k)

NX
i=1

NX
j=1

ci;jy2(k � i)y2(k � j) +

z2(n); n � 0; (6)

where z1; z2 2 S0 and jyi(n)j �
1

2
� for all n � �N and

i = 1; 2. Then u1(n) � u2(n) ! 0 as n ! 1 implies
that y1(n)� y2(n)! 0 as n!1.

Regarding our system (3), and using a relation in
the omitted proof of Theorem 5, Theorem 6 (together

6Proofs of the theorems in this appendix are given in [6].
7We have a somewhat stronger result even for the 
 =1 case

(in which the initial values of the output are assumed to be zero).



with Theorem 5) gives conditions under which the dif-
ference y1 � y2 of two output sequences converges to
zero whenever the di�erence u1 � u2 of the two corre-
sponding input sequences converges to zero.

A proof similar to the proof of Theorem 6 given
in [6] establishes that y in (5) belongs to S0 when u 2
S0, (u; u(�N); : : : ; u(�1)) belongs to U and
(y(�N); : : : ; y(�1)) 2 Y .

Now we consider inputs to our system (3) that are
asymptotically periodic. Let T be a positive integer.

Theorem 7: Consider (3). Suppose that (u; u(�N);
: : : ; u(�1)) belongs to U , that (y(�N); : : : ; y(�1)) be-
longs to Y , and that u(n) = up(n)+u0(n); n � 0 where
up(n) = up(n + T ); n � 0 and u0(n) ! 0 as n ! 1.
Then the output y satis�es y(n) = yp(n)+y0(n); n � 0
where yp(n) = yp(n + T ); n � 0 and y0(n) ! 0 as
n!1.

In other words, when (u; u(�N); : : : ; u(�1)) belongs
to U and (y(�N); : : : ; y(�1)) belongs to Y , asymptot-
ically periodic inputs produce asymptotically periodic
outputs with the same period.


