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ABSTRACT

This paper presents two theorems for the exact in-

version and the pth order inversion of a wide class of

causal, discrete-time, nonlinear systems. The nonlinear

systems we consider are described by the input-output

relationship y(n) = g
�
x(n)

�
+ f

�
x(n � 1); y(n � 1)

�
,

where g[�] and f [�; �] are causal, discrete-time and non-

linear operators and the inverse function g�1[�] exists.

The exact inverse of such systems is given by z(n) =

g�1
�
u(n)� f

�
z(n� 1); u(n� 1)

��
: Similarly, the pth or-

der inverse is given by z(n) = g�1p

h
u(n) � f

�
z(n �

1); u(n � 1)
�i

where g�1p

�
�
�
is the pth order inverse

of g
�
�
�
.

1. INTRODUCTION

Inversion of nonlinear systems is not a trivial task in

most situations. Not all nonlinear systems possess an

inverse and many nonlinear systems admit an inverse

only for a certain subset of input signals. For these

reasons, Schetzen has developed the theory of the pth

order inverse of a nonlinear system whose input-output

relation can be represented using Volterra series ex-

pansions [7], [8]. The pth order inverse of a nonlinear

system H is de�ned as the pth order system which,

connected in cascade withH, results in a system whose

Volterra kernels from the second up to the pth order are

zero. A pth order system is one in which all the Volterra

kernels of order greater than p are zero. The de�nition

of the pth order inverse was relaxed in [6] by allowing

the inverse system to possess non-zero Volterra opera-

tors of order greater than p. These operators do not af-

fect the �rst p Volterra operators of the cascade system
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and in [6] they are used in order to derive more sim-

ple and computationally e�cient expressions for the

inverse system. However, because of the presence of

higher order components, the de�nition of the pth or-

der inverse in [6] does not result in a unique inverse

system. Both the approaches of [6] and [7] lead to the

same result for the existence and the stability of the

pth order inverse. If the linear part (i.e. the �rst order

Volterra kernel) of the system H admit a Bounded In-

put Bounded Output stable inverse, then the pth order

inverse exists, it is BIBO stable and it depends only

from the �rst p Volterra operators of H. In this paper,

we accept the instability or the input dependent stabil-

ity of the resulting system in order to obtain the exact

inverse of a particular class of discrete-time causal non-

linear systems. The systems we are interested in are

described by the following input-output relationship:

y(n) = g
�
x(n)

�
+ f

�
x(n� 1); y(n� 1)

�
(1)

where g[�] and f [�; �] are discrete-time causal nonlinear

operators. Our main contribution is the derivation of

an expression for the exact inverse of the class of sys-

tems described by (1). The exact inverse of the system

in (1) may not exist or may not be stable for certain in-

put signals. However, even if the exact inverse cannot

be trivially derived, a more e�cient realization of the

pth order inverse may be obtained. The e�cient real-

ization we propose is derived by the use of a nonlinear

feedback.

The rest of this paper is organized as follows. The

inverse of the system in (1) is introduced in Section 2.

An e�cient pth order inverse is derived in Section 3.

Section 4 presents some experimental results that con-

�rm the usefulness of these inversion theorems. Con-

cluding remarks regarding the stability of the �lters

that results from the inversion procedure are discussed

in Section 5.



2. THE INVERSE OF CERTAIN

NONLINEAR SYSTEMS

In all our discussions we assume causal signals, i.e., all

the signals are identically zero for time indices less than

zero. The following theorem show how to evaluate the

exact inverse of the system in (1).

Theorem 1 Let g[�] and f [�; �] be causal nonlinear dis-

crete operators and let the inverse operator g�1[�] exist.

Then, the system described by the input-output rela-

tionship

z(n) = g�1
h
u(n)� f

�
z(n� 1); u(n� 1)

�i
(2)

is the exact inverse of the system in (1).

Proof: We demonstrate �rst that the system in (2) is

the post-inverse of (1), i.e., a cascade interconnection of

the system in (1) followed by the system in (2) results

in an identity system. We proceed by mathematical

induction. Let x(n) and y(n) represents the input and

output signals, respectively, of the system in (1). To

prove the theorem using induction, we assume that

z(n� i) = x(n� i) 8i > 0: (3)

We must now show using (3) that

z(n) = x(n) (4)

when u(k) = y(k) for k � n. Now,

z(n) = g�1
�
y(n) � f

�
z(n� 1); y(n� 1)

��
= g�1

�
g
�
x(n)

�
+ f

�
x(n� 1); y(n � 1)

�
+

�f
�
z(n � 1); y(n � 1)

��
:

(5)

By substituting z(n� i) = x(n� i) from (3) into (5), it

follows in a straightforward manner that z(n) = x(n).

We can prove in a similarmanner that the system in (2)

is also the pre-inverse of the system in (1), i.e., a cas-

cade interconnection of the system in (2) followed by

the system in (1) results in an identity system. This

completes the proof.

Example 1: The inverse of the bilinear system

y(n) = x(n) +

N�1X
i=1

aix(n� i) +

N�1X
i=1

biy(n � i)+

N�1X
i=1

N�1X
j=1

cijx(n� i)y(n � j)

(6)

is the bilinear system

z(n) = u(n)�

N�1X
i=1

biu(n� i)�

N�1X
i=1

aiz(n� i)+

�

N�1X
i=1

N�1X
j=1

cijz(n � i)u(n � j):

(7)

3. pTH ORDER INVERSES

Since the inverse system g�1[�] of Theorem 1 may not

always exist or may not be easy to derive, we now con-

sider the existence of the pth order inverses of the same

class of systems as before.

Theorem 2 Let g[�] and f [�; �] be causal discrete-time

nonlinear operators with convergent Volterra series ex-

pansion with respect to all the arguments. Moreover,

let the pth order inverse g�1p [�] of the system g[�] exist.

Then a pth order inverse of the causal discrete-time

nonlinear system described in (1) is given by the fol-

lowing input-output relationship

z(n) = g�1p

h
u(n)� f

�
z(n� 1); u(n� 1)

�i
: (8)

Proof: As was the case for Theorem 1, we �rst show

that the system in (8) is the pth order post-inverse of

the system in (1). Using the same variables as in the

derivation of Theorem 1, we express z(n) as

z(n) = g�1p

h
y(n) � f

�
z(n� 1); y(n� 1)

�i
= g�1p

h
g
�
x(n)

�
+ f

�
x(n� 1); y(n� 1)

�
+

�f
�
z(n� 1); y(n� 1)

�i
: (9)

We proceed by mathematical induction. We assume

that, for any i greater than zero, the output z(n � i)

di�ers from x(n � i) only by Tp(n � i), a term whose

Volterra series expansion in x(n) contains only kernels

of order larger than p, i.e.,

z(n� i) = x(n� i) + Tp(n � i) 8i > 0: (10)

We have to prove that the Volterra series expansion of

z(n) � x(n) have zero kernels of order up to p. Since

f [�; �] admits a convergent Volterra series expansion, we

have from (10) that the Volterra series expansion of the

di�erence f
�
x(n� 1); y(n� 1)

�
� f

�
z(n� 1); y(n� 1)

�
contains only kernels of order greater than p, i.e.,

f
�
x(n�1); y(n�1)

�
�f

�
z(n�1); y(n�1)

�
= 0+T 0

p(n);

(11)



where the Volterra kernels of T 0

p(n) up to order p are

zero. Substituting (11) in (9), we get

z(n) = g�1p

h
g[x(n)] + T 0

p(n)
i
: (12)

The pth order inverse of the operator g[�] derived in [7]

is given by a pth order truncated Volterra series whose

kernels depend only on the �rst p kernels of the Volterra

series expansion of g[�]. The pth order inverse derived

in [6] may have Volterra kernels of order greater than p.

However, the inverse still has a Volterra series expan-

sion with �nite order of nonlinearity, and it depends

only on the �rst p kernels of the Volterra series ex-

pansion of g[�]. Consequently, it immediately follows

from (12) that

z(n) = x(n) + Tp(n) (13)

and that the system in (8) is the pth order post-inverse

of the system in (1). We can prove in a similar manner

that it is also a pre-inverse of the system in (1).

Example 2: Wewish to derive a pth order inverse for

the second order Volterra �lter given by the following

expression:

y(n) =

N�1X
i=0

aix(n� i) +

N�1X
i=0

N�1X
j=i

bijx(n� i)x(n � j):

(14)

Let

g
�
x(n)

�
= aox(n) + x(n)

N�1X
j=0

b0jx(n� j) (15)

and

f
�
x(n�1)

�
=

N�1X
i=1

aix(n�i)+

N�1X
i=1

N�1X
j=i

bijx(n�i)x(n�j):

(16)

According to Theorem 2, a pth order inverse of (14) is

z(n) = g�1p

"
u(n)�

N�1X
i=1

aiz(n � i)+

N�1X
i=1

N�1X
j=i

bijz(n� i)z(n � j)

3
5 :

(17)

The pth order inverse g�1p [�] can be computed itera-

tively as in [6] and is given by

g�1p

�
u(n)

�
= �g�11

�
qp
�
g�1p�1

�
u(n)

��
� u(n)

�
; (18)

where g�11 [�] is the inverse of the �rst Volterra opera-

tor of g[�] (i.e., a�10 in our case) and qp[�] is the trun-

cated Volterra series expansion of the system g[�] that

contains only the second through pth order Volterra

kernels.

The computational cost expressed in multiplications

for the evaluation of (17) is 2(N � 1)+
(N�1)N

2
+ (N +

2)(p�1). The corresponding computational cost for di-

rectly computing the pth order inverse of (14) as in [6]

is N +
�
2N +

N(N+1)

2

�
(p�1): If the order p is greater

than two the computational advantage of using (17) be-

comes evident. Implementing (17) has computational

cost of O(N2 + pN ) multiplications while the method

in [6] requires O(N2p) multiplications. In general, if we

want to derive a pth order inverse for a Volterra �lter

of order q, the methodology suggested by Theorem 2

is more convenient when p is greater than q. On the

other hand, when p < q only the �rst p Volterra oper-

ators are signi�cant for the evaluation of the pth order

inverse. In this situation, both methods of inversion

require almost the same number of multiplications for

computing each output sample.

4. AN EXPERIMENTAL RESULT

We consider the pth order inversion of the second order
Volterra �lter with input-output relationship

y(n) = x(n)� x(n� 1)� 0:125x(n� 2)+
0:3125x(n� 3) + x

2(n)� 0:3x(n)x(n� 1)+
0:2x(n)x(n� 2)� 0:5x(n)x(n� 3)+
0:5x2(n� 1)� 0:3x(n� 1)x(n� 2)+
�0:6x(n� 1)x(n� 3)� 0:6x2(n� 2)+
0:5x(n� 2)x(n� 3)� 0:1x2(n� 3):

(19)

The pth order inverse derived applying Theorem 2,

where g�1p [�] is computed as in [6], is compared with the

pth order inverse obtained by directly using the method

in [6]. In Figure 1 the points identi�ed with � refer to

the pth order inverse of the Theorem 2, while the points

indicated with + refer to the pth order inverse of [6].

The plots in Figure 1a compare the computational cost

in multiplications for di�erent orders p of the inversion.

The computational e�ciency of the pth order inverse

of Theorem 2 over the inverse suggested in [6] can be

clearly seen in this �gure. Figures 1b and 1c displays

the mean-squared error (MSE) between the input sig-

nal of the system in (19) and the output of its pth order

inverse when connected in cascade to the system. The

input signal was white and Gaussian-distributed with

zero mean value. Figure 1b presents the MSE in the

reconstruction of the input for di�erent values of the

inverse �lter order p when the standard deviation of

the input signal was 0.05. Figure 1c shows the mean-

square error values for di�erent standard deviations of

the input signal for a �fth-order inverse system. All

the results presented are time averages of 1,000 sam-
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Figure 1: Experimental Results.

ples of the ensemble averages computed over �fty in-

dependent experiments. Values of the standard devi-

ations for which a corresponding MSE value is absent

correspond to instability situations. We can see that

our approach give the similar or better performances

as the method in [6] till instability arises in the inverse

system. In such situations, the performance of the pth

order inverse of [6] are also unacceptable.

5. CONCLUDING REMARKS

This paper presented two theorems for the exact inverse

and the pth order inverse of a wide class of discrete-

time nonlinear systems. As in the linear case, even

if a nonlinear system is BIBO stable its inverse sys-

tem may be unstable. The inverse systems we consider

in this paper are in most cases recursive nonlinear �l-

ters and therefore may possess poor stability proper-

ties. Consequently, the stability of such systems must

be tested after the inversion of the �lter. Stability of

recursive nonlinear systems is still a topic of active re-

search. Some useful results for the stability of recursive

polynomial �lters can be found in [1, 2, 3, 4, 5, 9].
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