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ABSTRACT

The Bayesian approach has been proven to give a
common estimation structure to existing image recon-
struction and restoration methods [1]. The goal of this
paper is to investigate di�raction tomography in this
framework. A regularized solution to this nonlinear in-
verse problem is de�ned as the maximum a posteriori

estimate, introducing prior information on the object
to be reconstructed. Two equivalent formulations of
this de�nition are proposed which lead to solution of
a constrained or an unconstrained optimization prob-
lem. From this point of view, we propose a classi�ca-
tion of existing methods for solving this problem and
new orientations to compute the de�ned solution.

Introduction

Di�raction tomography (DT) consists in constructing
an image representing the spatial variation of some
physical properties of an inhomogeneous object (such
as dielectric permittivity and conductivity for electro-
magnetic waves), from a data set of �eld scattered
by this object. In addition to its ill-posedness, the
characteristic of this problem is given by its nonlinear
object/data relation. The objectives of this paper are
i) to de�ne a regularized solution to this nonlinear in-
verse problem in the Bayesian estimation framework;
ii) to propose a classi�cation of some of the existing
methods as algorithms to compute the de�ned solu-
tion; iii) to propose new orientations and algorithms
for this computation in each distinguished class.

After a brief presentation of the direct problem
model, we de�ne a regularized solution in the Baye-
sian estimation framework. The maximum a posteri-

ori estimate is considered, so the solution's computa-
tion requires to solve an optimization problem.

Then a classi�cation of existing methods to solve
the DT problem is proposed. We have distinguished
three classes of methods: the �rst consider successive
linearizations of the direct model, the second de�ne
the solution as the minimum of a joint criterion de-
pending both on the object and on the �eld in the
object, the third minimize a criterion which only de-
pends on the object. For each of these classes, we
brie�y describe the methods' principles and we pro-
pose new orientations to compute the de�ned regular-
ized solution.

1. PROBLEM STATEMENT

We consider an inhomogeneous 2-D object, embedded
in a known background medium, illuminated with a
pure harmonic Transverse Magnetic plane wave. The

object is characterized by its complex contrast func-
tion x(r); r 2 R2 which is directly related to the di-
electric permittivity and the conductivity of the ob-
ject. The direct scattering problem is modeled by the
coupled integral equations:
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where y(ri); ri2DM is the scattered �eld on a sensor
located at ri in the measurement area DM, �(r); r 2
DO and �0(r); r 2DO are the total and the incident
�eld in the object area DO, and G is the Green function
for the known background medium.

From an algebraic viewpoint, discretization of these
equations with a moment method, leads to:

y = GMX�; (1)

� = �0 +GOX�; (2)

where y 2 C
nM ;� 2 C

nO ;�0 2 C
nO ; X is a diagonal

matrix (nO � nO) with the components of the vector
x 2 C

nO as diagonal elements, nO is the number of
pixels of the discrete object and nM is the number of
measurement sensors. Note that these notations can
be extended for emission from nS di�erent positions.

Formally, the total �eld � in the object can be
expressed from (2) and introduced in (1). It gives an
explicit relation between the contrast and the data
y = A(x) with:

A(x) = GMX (I �GOX)
�1
�0: (3)

The direct problem is modeled equivalently with
the coupled equations (1�2) or with the explicit rela-
tion (3). Solution of this problem requires the inver-
sion of a nO�nO matrix (or solution of a linear system
of nO equation and nO unknown) and is computation-
ally very expensive. The inverse problem, which we
are concerned with consists in determining the con-
trast x from a given �nite set of data y; inevitably
imperfect with respect to the direct model.

2. BAYESIAN FRAMEWORK

The Bayesian inference is now a common way to han-
dle ill-posed inverse problems in signal and image pro-
cessing [1]. This general framework can be applied on
many ways to the considered problem, according to
the choice of di�erent models.

We model the errors on the measurement with
an additive zero mean white Gaussian circular noise,
which seems to be reasonable in the absence of com-
plementary information.



The a priori state of knowledge, that is before
any measurement is carried on, is modeled through
a probability law p(x) / exp f�U(x)g of energy func-
tion U(x): The choice of U(x) is a basic point in the
Bayesian framework and the Markov Random Fields
are classically used for image modeling. The choice of
such a function is not the aim of this work and for the
sake of simplicity, this energy function is chosen to be
convex in the following.

From these assumptions, two formulations can be
deduced, depending on whether the contrast x has to
be estimated from the data y or both the contrast x
and the �eld in the object � have to be estimated �
the estimate is de�ned in the maximum a posteriori

(MAP) sense.

2.1. First Formulation: Estimation of x:

This formulation is straightforward. The solution is
de�ned as the MAP estimate xMAP = argmax

x
p(xjy):

From the explicit relation (3) it corresponds to the
global minimizer of the criterion

J
MAP

(x) = ky �A(x)k
2
+ �U(x): (4)

2.2. Second Formulation: Joint estimation of

x and �:

The solution is de�ned as the joint MAP estimate of
x and �: (x;�)MAP = argmax

(x;�)
p(x;�jy); where

p(x;�jy) =
p(yjx;�)p(�jx)p(x)

p(y)
: (5)

In this relation, p(y) is a constant and p(x) has already
been de�ned so only the �rst two numerator terms are
to be speci�ed:
� Using (1), with the considered error model, �rst term
can be written:

p(yjx;�) / exp

�
�

1

�2b
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2

�
;

� Second term corresponds to the probability law of �
for a known x. As � is the total �eld in the object, it
is uniquely determined for a given x by (2). Thus, if
� denotes the Dirac distribution:

p(�jx) = �(�� �0 �GOX�);

Finally, using these expressions, the posterior prob-
ability law can be written:

p(x;�jy) / exp
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�

�(�� �0 �GOX�):

So the MAP estimate of (x;�) is the minimizer of
the criterion:

J
MAP

c (x;�) = ky �GMX�k
2
+ �U(x); (6)

subject to the constraint:

�� �0 �GOX� = 0: (7)

2.3. A Computational Challenge

The regularized solution has been de�ned as the solu-
tion of a constrained or an unconstrained optimization
problem. These two distinct formulations are equiv-
alent in the sense that they de�ne the same solution
(for x), but one may think about the use of di�erent
techniques to solve them.

The Bayesian framework is actually not necessary
to de�ne the solution as the minimizer of (4). In-
deed, this criterion is simply a penalized least square

criterion which can be taken into account in a deter-
ministic framework. On the other hand, the de�ni-
tion of the joint solution as the minimum of (6) under
constraint (7) is not straightforward to set from deter-
ministic arguments and other joint criteria are often
proposed, which will be studied in � 4.

Due to the non-linearity of the direct problem, it
is easy to show that criteria (4) and (6) are not con-
vex functions. Thus, even if the prior information is
modeled with a convex energy function, these criteria
may have local minima. From simulation experiments,
appearance of local minima is closely linked to a high
contrast value, a limited number of measurements and
a low signal-to-noise ratio. Thus computation of the
solution may be a cumbersome task, especially in these
di�cult con�gurations. However, the problem seems
to be less di�cult in more favorable con�gurations.

In the simplest case, a linear approximation (e.g.,
Born) of the direct model can be considered, which
seems to be su�cient for some few applications [2].
However, the linear case has already been extensively
studied and this paper is concerned with nonlinear
DT. In the following sections, we propose a classi�ca-
tion of existing methods for solving this problem.

3. SUCCESSIVE LINEARIZATIONS

Methods of the �rst class consider iteratively linear
approximations of the direct model, which leads to
successively resolve linear inverse problems. Di�erent
methods of this class have been proposed in the liter-
ature to solve the nonlinear DT problem [4, 5, 6]. In
the proposed Bayesian framework, one may �nd strong
correspondences between them, as shown in [7]. It is
also emphasized that none of these methods were ef-
�cient both in terms of linear approximation and of
regularization. In fact, regularization has been intro-
duced to stabilize the solution of each linear problem,
but not to regularize the nonlinear problem as a whole.

Thus we have proposed a successive linearization
algorithm speci�cally designed to minimize the MAP
criterion (4). At each iteration n; with corresponding
solution xn; the �rst order Taylor series expansion of
A near xn is taken into account (strictly speaking, one
has to account for the Taylor series expansion of the
real and imaginary parts of A to de�ne such a rela-
tion). Thus minimization of J MAP can be performed
with successive linearizations of A:

Initialize n = 0;x0:

Iterate for n = 1; 2 : : : until convergence towards a
stationary point:

1 Compute the matrixAn corresponding to the linear
approximation of A near current solution xn;

2 Compute xn+1 = argmin
x

Jn(x) with

Jn(x) = ky �A(xn)�An(x� xn)k
2
+ �U(x):

Note that for convex energy functions U ; all crite-
ria to be minimized are convex functions and conse-
quently have a unique global minimum which can be
computed using a gradient descent technique.

At each step, J MAP is approximated by a convex
criterion Jn with same value at xn and same slope at
this point. Of course, there is no convergence guar-
antee and the algorithm could diverge. However, if
it converges towards x1; this point corresponds to a



stationary point of the criterion J MAP (i.e., such that
rxJ

MAP(x1) = 0). But the possible convergence and
the reached stationary point are dependent upon the
initialization of the algorithm.

The computational load of such an algorithm is
moderate as it does not require the computation of
the direct problem, but only of a linear approximate,
during the minimization step. However, the computa-
tion of the approximating matrixAn at each iteration,
requires solution of the direct problem. Such an algo-
rithm can be used to compute the MAP solution with
a relative low computational cost, when the criterion,
even not convex, seems not to have any local minima.

4. MINIMIZATION OF A JOINT

CRITERION

Some recently proposed methods [8, 9, 10] � methods
of the second class � de�ne the solution as the mini-
mizer of a criterion jointly on the contrast x and the
�eld in the object �; with the following generic form:

F (x;�) = ky �GMX�k
2 (8)

+ � k�� �0 �GOX�k
2
+ �U(x;�):

Such a de�nition is very easy to understand intuitively:
it corresponds to jointly minimizing the errors on (1)
and (2) and, as the problem is ill-posed, a penalization
term on the unknowns is added to regularize it.

The proposed methods di�er on several points:

� Di�erent value has been proposed for parameter �:

� Di�erences appear on the regularization term. First,
no regularization was introduced [8, 9]. Then, it has
been proposed to regularize both on x and �; with
an energy function U(x;�) [10, 11]. Finally, a single
regularization term on x was accounted for [12, 13].

� The methods also di�er in the techniques used to
compute the solution. Usual gradient type local min-
imization techniques have been used [9, 11] as well
as local techniques specially designed for such a cri-
terion [8] and global minimization techniques such as
Simulated Annealing [12].

Note that such a method never requires solution
of the direct problem � which was one of their main
objectives � so it is of relative low computation cost.
On the other hand, the number of unknown is multi-
plied by nS + 1; as the object x and the �eld in the
object for each incident wave have to be determinate.

4.1. Bayesian viewpoint

Recall from � 2.2 that joint estimation of x and � leads
to minimization of (6) subject to constraint (7). In
this framework, criterion (8) can be understood as the
Lagrangian of this constrained optimization problem
(for a scalar constraint: k�� �0 �GOX�k

2
= 0);

or has a penalization of (6) with this constraint. In
both cases, the choice of parameter � (the Lagrange
parameter) is important: on one hand, the value of �
should be high enough to enforce the constraint; on
the other hand, the criterion may become numerically
insensitive to the data if � is too high. Note that �
has been �xed intuitively in the di�erent methods.

Moreover, this viewpoint gives indications for reg-
ularizing such a criterion with an energy function U(x).
Using Bayes rule for the considered model of errors on
measurements, we can see on (5) that there is no need
to introduce prior model on �.

Another Bayesian interpretation of this criterion
has been given in [12]. It is proposed to account for
additive Gaussian models for errors on both coupled
equations (1�2), so that the joint MAP estimate of x
and � minimizes a criterion of form (8). However, it
can be shown [14] that to obtain such a criterion, the
error on the measurement should be taken correlated
to the unknown x or �; which seems to be a strong
and unjusti�ed hypothesis.

Of course, the minimization of (8) is not equiva-
lent to compute the MAP estimate has de�ned in � 2.2.
However, it is easy to show that if (x;�) is a local min-
imum of (8) and that constraint (7) is veri�ed, then x
corresponds to a local extremum of the unconstrained
criterion J MAP:

4.2. Proposed algorithm

We proposed a new algorithm to deal with this con-
strained optimization problem [14]. This algorithm is
a strict application of the method of multipliers [3] �
which uses the augmented Lagrangian � and can be
summarized as follows:

Initialize n = 0;�0 = 0; �0

Iterate for n = 1; 2 : : : until convergence towards a
stationary point:

1 Compute (xn;�n) minimizing the augmented
Lagrangian: L�n((x;�);�n) =

ky �GMX�k
2 + �t

n(�� �0 �GOX�)

+ �nk���0 �GOX�k
2 + �U(x);

2 Update parameters: �n+1 = ��n (� �xed) and
�n+1 = �n + �n(�� �0 �GOX�):

We have used a gradient descent technique to per-
form the minimization of the augmented Lagrangian,
so the reached minimum at each step is only a local
minimum. Such an algorithm, when converges, guar-
antees to reach a local minimum of (6) which veri�es
the constraint (7), but the convergence is not guar-
anteed. However, the �rst step of this algorithm cor-
responds to the minimization of (8), and the use of
additional iterations has been shown to decrease the
error on the constraint and to improve the solution.

5. DIRECT MINIMIZATION OF JMAP

Di�erent methods � Third class methods � minimize
the least square criterion, possibly taking into account
a regularization term (e.g. [15, 16, 17]); which corre-
spond to directly minimize the MAP criterion (4). The
computation of this criterion is very expensive as it re-
quires solution of the direct problem. Thus, two cases
should be distinguished:

� In easy con�gurations, when (4) � even nonconvex �
seems to have a unique minimum, a local optimization
technique could be used [16, 17]. However, we have
shown that such a minimization could be done with
less computationally expensive �rst and second classes

methods; so one should avoid minimizing directly (4).

� In di�cult con�gurations, when such local minima
exist, �rst and second classes methods discussed � 4
and � 3 fail. In this case, a global optimization tech-
nique could be used to minimize (4).

Simulated Annealing has been used in [15], but
such a technique is practically inextricable because
of the high computation cost of the criterion and the



large support of the operator A: Instead, we proposed
two less expensive deterministic algorithms to try to
reach the global minimum:

� The �rst algorithm [18], is based on a Graduated
Non Convexity scheme (GNC). It consists in approx-
imating globally the criterion to be minimized with
a sequence of criteria, which converges towards it, by
taking care to choose the �rst one to be convex. Then,
each criterion is minimized locally, using as starting
point the minimum of the previous criterion.

� The second one is an Iterated Conditional Mode
(ICM) algorithm which performs the minimization by
iteratively updating each pixel of the object. Such
an algorithm can be e�ciently implemented [19] using
special properties of the criterion (4).

None of these algorithms are guaranteed to con-
verge towards the global minimumbut both have given
satisfactory results in con�gurations where a gradient
type algorithm gets stuck in a local minimum.

6. CONCLUSION

The study of DT in the Bayesian estimation frame-
work allowed us to de�ne a regularized solution to this
nonlinear inverse problem.

We have proposed a classi�cation of most of the
existing methods in terms of algorithms to compute
this solution. Three classes have been distinguished.

Methods of the �rst class correspond to successive
approximations of the nonlinear object/data relation
with a linear one. At each iteration, a minimization
step can be performed at a relatively low computa-
tion cost, but an update step requires solution of the
computationally expensive direct problem.

Methods of the second class de�ne the solution as
the joint minimizer of a criterion depending both on
the object and on the total �eld in the object. These
methods do not require solution of the direct prob-
lem and the criterion to be minimized is of equivalent
computation order to the �rst class methods criteria.
However, the number of unknowns is greater, espe-
cially if the measured scattered �eld corresponds to
di�erent incident waves.

Third class methods directly minimize the MAP
criterion depending on the object. As such methods
are much more expensive than the others, they should
be used when the others fail, in particular in presence
of local minima in the criterion. In this case, global
optimization methods of this third class can give satis-
factory solutions while methods of the �rst and second

classes get stuck in local minima.
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