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ABSTRACT

Experimental data often can only be interpreted by
means of a computational simulation that approximately
models the physical situation. We will discuss tech-
niques that facilitate application to complex, large-scale
simulations of the standard approach to inversion in
which gradient-based optimization is used to �nd the
parameters that best match the data. The fundamen-
tal enabling techniques are adjoint di�erentiation to ef-
�ciently compute the gradient of an objective function
with respect to all the variables of a simulation and
relatively new gradient-based optimization algorithms.
These techniques will be illustrated through the simu-
lation of the time-dependent di�usion of infrared light
through tissue, which has been used to perform optical
tomography [1]. The techniques discussed have a wide
range of applicability to modeling including the opti-
mization of models to achieve a desired design goal.

Keywords: simulation, inversion, adjoint di�erentia-
tion, optimization

1. THE GENERAL PROBLEM

Frequently a physical situation can only be described
fully by a computational model. We wish to address
the general problem of �nding the values of the param-
eters in such a model that come closest to matching a
given set of data. In data matching the objective func-
tion to be minimized is often the negative logarithm of
the likelihood of the data given their predicted values,
which yields the maximum likelihood (ML) solution.
Alternative approaches include regularized versions of
maximum likelihood and Bayesian methods in which
the objective function is the minus-log-posterior, yield-
ing the maximum a posteriori (MAP) estimate.
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We con�ne ourselves to objective functions that de-
pend on the parameters in a continuous and di�eren-
tiable fashion. We do not avoid problems for which the
objective function possesses multiple minima. How-
ever, because the techniques that we present make use
of gradients in the optimization process, they will work
e�ectively only when one can easily �nd the basin of at-
traction for the global minimum, for example, by mul-
tiscale or multiresolution optimization.

The proposed method of solving the inverse prob-
lem is generally applicable to a wide variety of prob-
lems in which the measurements for the process in
question are adequately described by a predictive for-
ward computational model. We believe it may be used
in estimating geophysical structure from seismic data.
Other potential application areas include modeling of
the ocean, atmosphere, uid ow, and shock-wave phe-
nomena, as well as optimization of engineering designs
in complex situations such as streamlining of airplane
foils and automobile bodies to reduce drag.

Limitations of space preclude elucidation of the de-
tails of the techniques presented. The reader should re-
fer to the cited articles for more complete information.
Other enabling techniques that can not be included in
this account are multiscale analysis to constrain and
accelerate the optimization process, deformable geo-
metric models for describing objects with sharp bound-
aries, and the Markov Chain Monte Carlo method of
sampling the uncertainty distribution of the estimated
parameters [2].

2. ADJOINT DIFFERENTIATION

We wish to address problems that require minimizing
a scalar function ' by varying the many (103 to 106

or more) variables that comprise the parameters of the
object model. This optimization problem would be in-
tractable without knowing the gradient of ', or sen-
sitivities, with respect to the parameters on which it
depends. We have uncovered a technique to calculate
these crucial sensitivities, called adjoint di�erentiation
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Figure 1: Data ow diagram showing a sequence of
transformations, represented by the boxes A, B, and C
connected by the arrows pointing to the right, starting
with the data structure x and ending with the scalar
'. The data ow for the adjoint derivatives is indicated
by the arrows pointed left.

[4], that is apparently relatively unappreciated. Using
the adjoint di�erentiation technique, the calculation of
all these derivatives can be done in a computational
time that is comparable to the forward calculation.

Suppose that a calculation proceeds as a sequence
of transformations as shown in Fig. 1. The indepen-
dent variables in the data structures designated by the
vector x are transformed by block A to produce the de-
pendent variables y. These are transformed by blocks
B and C to produce the dependent data structure z
and the �nal scalar ', respectively.

We call the sequence of transformations

x
A
! y

B
! z

C
! ' ;

the forward calculation. We assume that the trans-
formations are general, with the only restriction being
that they are di�erentiable. Each transformation is
self-contained; it requires only its input variables to
calculate its output variables, e.g., module B uses only
its input y to calculate its output z. Therefore, each
transformation should require nothingmore than its in-
put to implement the derivative of its output variables
with respect to its input variables. The data structures
are likewise general.

The chain rule allows us to calculate the derivatives
of ' with respect to the ith component of x,
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Even if the transformations are nonlinear, this expres-
sion amounts to a product of matrices. The order of
the summations can obviously be done in two di�erent
ways. If the sum over j is done before the sum over k,
the calculation proceeds in the same direction as the
forward model calculation. As the dimensions of x, y,
and z are assumed to be large, this sequence results in
very large intermediate matrices, which we would like
to avoid.

On the other hand, if the sum on k is done before
that on j, the sequence of calculations is
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where, for example, B0y e�ectively multiplies @'
@z by the

adjoint of the matrix @z
@y . The symbol I at the begin-

ning of the sequence represents the identity structure,
indicating that the sensitivity calculation begins with
the �rst adjoint derivative transformation C0y. This se-
quence implies intermediate data structures (e.g. @'

@y )

that mimic the normal data structures (e.g. y) implying
storage requirements identical to the forward calcula-
tion. If the forward transformations are nonlinear, the
forward data may be required for the adjoint calcula-
tion. The backward ow of the adjoint derivatives is
depicted in Fig. 1.

The adjoint di�erentiation calculation is straight-
forward to program [5]. Provided that the logic of
the forward calculation is not too intricate, the adjoint
derivative calculation should involve an amount of com-
putation comparable to the forward computation.

We have coined the acronymAdjoint Di�erentiation
In Code Technique (ADICT) [3] to describe a particular
approach to adjoint di�erentiation. The unique feature
of ADICT is that the computer code for the adjoint cal-
culation is based on the simulation code with the ex-
plicit intent to \di�erentiate" the forward calculation.
For optimization of a functional based on computation,
it is desirable to have the gradient of the computation,
not of the physics equations that the computation is
supposed to approximate.

There are several compilers of FORTRAN code that
\automatically" produce adjoint di�erentiation code,
including the well-known ADIFOR [6] and GRESS [7].
However, these approaches impose heavy memory re-
quirements. More promising for application to large
simulation codes is a code-based approach by Gier-
ing [8]. So far, our approach has been to manually
code the adjoint code, sometimes a daunting task, but
one that can be learned [5, 9]. Our experience with
object-oriented design and programming indicates its
tremendous advantage for linking calculations together
to form a data-ow diagrammade of autonomous trans-
formations, as in our Bayes Inference Engine [3].

3. OPTIMIZATION

The ML or MAP solution is found by minimizing a
scalar functional ' with respect to all the model param-
eters. Given the possibly large number of parameters,
it is imperative to use the derivatives of ' with respect



to all parameters. Fortunately, there is a technique to
e�ciently calculate these gradients as described in the
previous section. The standard approaches to gradient-
based optimization of functions of many parameters are
steepest descent and conjugate gradient. Beyond these
there are a number of techniques that are generally re-
ferred to as quasi-Newton methods. Davidon pioneered
the variable metric approach [10], which is based on
building up an approximate expression for the inverse
Hessian (the second-derivative matrix of '). Our ini-
tial success with this algorithm leads us to believe that
similar, but more adaptable algorithms are worth ex-
ploring, namely the limited-memory BFGS (Broyden-
Fletcher-Goldfarb-Shanno) [11] and possibly the trun-
cated Newton [12] algorithms, both of which seem to
have strengths for di�erent kinds of problems.

4. EXAMPLE: TIME-DEPENDENT

DIFFUSION

As an example of the success of ADICT, let us summa-
rize the results of Saquib et al. [1], who investigated the
di�usion of infrared light through tissue. They solved
the problem of inversion of time-resolved data to ob-
tain the distribution of di�usion coe�cients through
which the light passed. Suppose that the intensity of
di�used light at position (x; y) and time t is denoted by
U(x; y; t) and the source strength by R(x; y; t). Then
the time evolution of U through a region described by
di�usion coe�cientsD(x; y) and absorption coe�cients
�a(x; y) is given by the di�usion equation
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where the spatial and temporal dependence of the pa-
rameters has been suppressed. The quantity c is the
speed of light.

We approach the computational problem in terms
of discrete samples of U on a spatial grid with locations
speci�ed as a subscript s and in time with a superscript
n. When the spatial position subscript is dropped, the
resulting quantity is a column vector obtained by ei-
ther row-ordering or column-ordering the correspond-
ing two-dimensional �eld (e.g., Un).

For simplicity we assume that the measurements
are degraded by additive uncorrelated Gaussian noise.
The minus-log-likelihood of the observations Y given
D and �a is

' = � logP (Y jD;�a) =
1
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Figure 2: Data ow diagram for the forward calculation
of the di�usion problem resulting in ' = 1

2
�2. The

adjoint di�erentiation calculation reverses this ow.

where �2s;n is the noise variance at spatial position s

and time n and the tilde on the U indicates only those
positions at which the light intensities are measured.

To compute (3) given D and �a, we need to solve
the di�usion equation (2) forward in time to obtain
the di�use intensity Un

s for all time n and spatial po-
sitions s. We will briey summarize the approach to
this calculation employed in Ref. [1], which should be
consulted for the details.

4.1. Solving the Forward Problem

The general approach taken to solve this forward prob-
lem is to use the �nite-di�erence method in which the
spatial and temporal derivatives in Eq. (2) are replaced
by their �nite-di�erence approximations. This substi-
tution results in a di�erence equation that needs to
be solved forward in time. When solving the di�er-
ence equation for Un+1, the �nite-di�erence approxi-
mations to the spatial derivatives can be evaluated ei-
ther at time index n+ 1 or n. In the implicit method1

for solving di�erential equations, the spatial derivatives
are evaluated at the time instance (n + 1) when com-
puting the di�use intensity Un+1. The implicit method
is unconditionally stable for any value of �t.

Substituting in Eq. (2) the equation to be solved to
obtain Un+1 from Un is, in vector notation,

AUn+1 = Un + �Rn+1=2 ; (4)

where A is a sparse matrix (because derivatives involve
only local variables) whose elements depend on the D
and �a values. �Rn+1=2 denotes the integrated source
strength between time instances n and n + 1.

1We note that in [1] a slightly di�erent method, called the
Alternating-Directions Implicit (ADI) method, was used for cal-

culational e�ciency.



The procedure for calculating the time-evolution
of U is depicted in Fig. 2. The transformations de-
noted by �T essentially involve solving Eq. (4) to move
forward by one time step. The minus-log-likelihood
( 12�

2) is the accumulation of the sum of the squares

of the di�erences between the measurements Y n
s and

their predicted values ~Un
s . Thus it gets a contribu-

tion from each measurement time. The assumed time-
independent distribution of D is used in each time step
calculation.

4.2. Gradient Computation

We designate the unknown parameters by the column
vector � = [D �a]T . We need the derivative or sensitiv-
ity of '(�) with respect to � to facilitate the solution of
the inverse problem. ADICT requires us to work back-
wards in time using the same discretized equations that
is used to compute the forward solution. The sensitiv-
ity of ' with respect to � is obtained by computing the
intermediate sensitivity of ' with respect to the light
intensity U at all time steps. We present a brief outline
of the approach.

The sensitivity of ' with respect to Un is obtained
recursively by using the sensitivity of ' with respect to
Un+1. Application of the chain rule yields
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�T
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; (5)

where @'
@Un

denotes the change in ' when only Un is

varied, keeping all other variables constant, while d'
dUn

denotes the total change in ' when Un is varied along
with all variables that depend on Un. Di�erentiating
Eq. (3) with respect to Un

s , we obtain
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This result ows backwards through the boxes that
compute contributions to 1

2
�2 at each time step. Dif-

ferentiating Eq. (4) with respect to Un, we obtain

dUn+1

dUn
= A�1 : (6)

Using Eqs. (5) and (6), we obtain the sensitivity of '
with respect to Un as

d'

dUn
= (A�1)T
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In the diagram this result comes from each �T trans-
formation and ows backwards from Un+1 to Un.

Similar use of the chain rule yields the sensitivity of
' with respect to �, which result ows out of the top
of the �T box in Fig. 2 and gets added to the total
derivative of ' with respect to the D vector.

4.3. Inversion

The problem of reconstructing the unknown parame-
ters D and �a from the measurements Y n

s is an ill-
posed inverse problem. Some form of regularization is
necessary to make the solution well behaved. We ac-
complished this by incorporating an imagemodel in the
reconstruction process that models our a priori knowl-
edge regarding the unknown �elds D and �a. Markov
random �elds (MRF) have been extensively used in im-
age processing applications. We model D as a gener-
alized Gaussian MRF (GGMRF) [13] with an energy
function of the form
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where N is the set of all neighboring pixel pairs. The
popular choice of p = 2 in the signal-processing litera-
ture yields a quadratic cost function, which tends to ex-
cessively penalize large deviations resulting in blurred
edges. It is possible to provide good edge preservation
in the reconstructed image for p � 1 [14]. Furthermore,
the form of the model facilitates the estimation of the
strength of this prior directly from the data [14].

Our example consists of a simulation of time-resolved
data for a 6.4-cm-square section of tissue. Figure 3
shows as a 64�64 image the original di�usion coe�-
cients, which range in value from 0.7 to 1.4 cm2ns�1.
The absorption coe�cients are set to a constant value
of 0.1 cm�1. The values of these coe�cients, as well as
the physical dimensions of the problem, have been cho-
sen to reect those of real tissues. Although the above
method can be used to estimate D and �a simultane-
ously, we will restrict ourselves to the simpler case of
just estimating D and assume that �a is known.

We assume that there are four pulsed sources placed
at the midpoints of each side of the square region.
There are 52 detectors evenly spaced along the sides,
which measure the time-dependent signal in response
to each pulsed source. Gaussian noise is added to the
simulated signals with an rms value of 3% of the rms
signal value over the 1:0 ns observation time, corre-
sponding to a signal-to-noise ratio of 30 dB. The time
step used is �t = 0:005 ns and the detector resolution
is 0:02 ns.

Figure 3 shows the MAP reconstruction for p =
1:1 obtained using 70 iterations of the conjugate gra-
dient algorithm (taking about nine hours on an HP
9000/755). The reconstruction is remarkably good con-
sidering that e�ectively only four views are used. This
result con�rms the value of incorporating ADICT into
a simulation code to solve this inversion problem in
which roughly 4000 parameters are determined from
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Figure 3: The original distribution of di�usion coef-
�cients (a) and their reconstructed values (b) derived
from time-dependent measurements made around the
periphery in response to short pulses introduced at the
middle of each of the four sides.

approximately 10000 measurements (54 detectors � 50
time samples � 4 source positions).

5. DISCUSSION

We have presented some useful tools that permit one
to e�ciently estimate parameters of a complicated for-
ward model from measurements. The use of a forward
model is important because many steps in a model that
might describe a physical system and measurement sce-
nario may not easily be directly inverted. This general
approach allows one to attempt to construct complete
models to fully account for the observations.

The primary technique in the toolkit is the Adjoint
Di�erentiation In Code Technique (ADICT) that yields
derivatives of a functional (objective function) based on
a forward computational code with respect to all the
parameters in the computational model. The deriva-
tives of the computed functional are desirable when
minimizing that functional. In the partcular approach
that we suggest, adjoint di�erentiation is accomplished
through code rather than by storing derivative matices.
The resulting calculational time for the derivatives is
comparable to that of the forward model calculation.
ADICT can, in principle, can be implemented for any
code that is di�erentiable. Adjoint di�erentiation is be-
ing applied to some large hydrodynamic codes, e.g., to
calculate the dynamics of the ocean and atmosphere.

ADICT permits the use of gradient-based optimiza-
tion algorithms, which are quite e�cient. We have had
some success with a quasi-Newton method of optimiza-
tion and we therefore suggest that the limited-memory
BFGS algorithm [11] may be very useful for problems
involving many parameters of mixed type.

When optimizing nonlinear models it is possible to
encounter objective functions with multiple local min-
ima, which can pose di�culties for gradient-based algo-
rithms. However, for many kinds of problems, the de-
sired minimum can be found either by knowledgeably
choosing at good starting point or by using a multireso-
lution approach, i.e. by �nding the minimum at coarse
resolution and then working toward �ner resolutions
[15]. If this approach does not work for a particular
problem, to �nd the global minimum it may be nec-
essary to resort to stochastic optimization algorithms
(simulated annealing or genetic algorithm), which are
notoriously ine�cient compared to gradient-based ap-
proaches. It might be possible to combine the best of
both approaches through a hybrid algorithm in which
the stating point of a gradient-based algorithm is cho-
sen stochastically.

It is often desirable to use a high-level model to
describe an object or situation of interest. As an ex-
ample, we have found it very useful to employ a de-
formable geometric model to represent the boundary of
an object that we wish to reconstruct from projection
data [2, 5]. In three dimensions, such a model might
consist of a surface represented by many triangles. An
even higher-level model would use spline-based patches,
which would result in fewer parameters, but not neces-
sarily much less computation time. High-level models
are often invoked to help regularize or control the in-
version problem in the belief that it should be easier to
solve a problem involving fewer variables. However, we
have come to realize that it may be more desirable to
use a very exible description involving many parame-
ters. The exibility of such a model can be controlled
through the use of a prior or graded constraint func-
tion, which e�ectively reduce the number of degrees of
freedom of that model. Such constraints often take the
form of an integral of the square of a derivative of some
quantity, which bascially acts to smooth that quantity.
The advantage of this general approach is that it allows
one to choose the prior that is most appropriate for the
problem and even locally turn o� the control when that
is indicated by the data or circumstance [16].

In constructing the Bayes Inference Engine [3], we
have uncovered another basic tool for model building.
In order to easily accommodate a variety of deformable
geometric models in conjunction with a variety of po-
tential measurement scenarios, we decided to employ
an intermediate elemental representation for the ob-
ject of interest. Every high-level model is converted to
the elemental representation before the measurement
process can be accomplished. For a physical object the
elemental representation is a discretized density image
(array of pixels) in 2D or a voxelated array in 3D. This



approach permits implementation of a new high-level
object model without writing new code to calculate the
result of each type of measurement.

Beyond its calculational advantage, we have come
to recognize the underlying value of the elemental rep-
resentation as a basic modeling tool. Its importance
lies in the fact that when one uses and sees only a high-
level model, de�ciencies in matching the data can only
be displayed in terms of the gradients of ' with respect
to the model parameters. It can be di�cult to recog-
nize what aspects of the model do not accommodate
the data. However, by displaying the gradients in the
elemental representation, it can become evident how
the high-level model needs to be changed, and possibly
augmented, to better match the data [16].

An important message that we wish to get across
is that one should not be afraid of using models that
contain large numbers of variables. With reasonable
constraints on the models, one can easily accommodate
lots of parameters. Our experience indicates that there
is often no big penalty associated with using many pa-
rameters, either in terms of computational speed or ill
posedness.
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