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ABSTRACT

We present a parametric model to describe radar scat-
tering of man-made objects from synthetic aperture
radar (SAR) measurements. The model is developed
for high frequency scattering of objects in the frequency-
angle domain, and transformed into the image domain
for parameter estimation. The image-domain model
is applied to SAR image segments to extract a geo-
metrically relevant parametric description of dominant
scattering behavior. The estimated parameters provide
a concise description of the measured scattering, and
has applications in object recognition and data com-
pression.

1. INTRODUCTION

In this paper we develop a two-dimensional model for
radar scattering that is useful for describing high fre-
quency synthetic aperture radar measurements of ob-
jects. The model is based on a scattering center de-
scription of the objects of interest; at high frequencies,
the scattering response of an object is well approxi-
mated as a sum of responses from individual scatter-
ing centers [1]. These scattering centers provide a con-
cise, physically relevant description of the object and
are thus good candidates for use in target recognition,
radar data compression, and scattering phenomenology
studies.

We develop a two-dimensional model for radar scat-
tering as a function of frequency and aspect. The model
is based on the physical optics and the geometric the-
ory of di�raction (GTD) monostatic scattering solu-
tions. It extends the one-dimensional GTD model pre-
sented in [2] to include aspect angle, and extends the
two-dimensional model in [3] to more physically rele-
vant parameterizations. The model provides a physical
description of target scattering centers, each of which
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is described by a set of parameters characterizing posi-
tion, shape, orientation (pose) and amplitude. This is a
richer description of target scattering than is available
either from conventional Fourier-based imaging tech-
niques [4] or from less physically accurate point scat-
tering parametric models [5]. The aspect dependence in
our two-dimensional model allows description of both
localized and distributed scattering centers, providing
a higher �delity description of scattered �elds.

The model is derived in the frequency-angle do-
main, but transformed into the image domain where it
is applied to measured SAR image data. Image-domain
processing a�ords a number of advantages, including
computational e�ciency, insertion into standard SAR
processing streams, and robustness to noise and clut-
ter. In most SAR applications, imaging of the mea-
sured data is the �rst step carried out, and subsequent
data processing (e.g., for target detection and recogni-
tion) is applied to image-domain data. Data compres-
sion and scattering phenomenology studies also bene�t
from image-domain processing and interpretation. Fi-
nally, image-domain processing provides robustness to
clutter model assumptions, and permits isolating re-
gions of high signal-to-clutter ratios for model �tting
[5, 3].

We present an algorithm for estimating the model
order and model parameters from a measured SAR
image. The algorithm recursively estimates and sub-
tracts modeled terms from the data until the resid-
ual energy is below a user-selected threshold. At each
step, the scattering center parameters are estimated
on a segmented region of the image using a nonlin-
ear least squares minimization procedure. Numerical
examples presented for measured data show the e�ec-
tiveness of the algorithm, with parameter estimation
accuracy achieving the Cram�er-Rao bound.



2. SCATTERING MODEL

We �rst develop a parametric model for the backscatter
from objects measured as a function of frequency and
aspect angle (see also [6]). We seek a model that main-
tains high �delity to the scattering physics for many
objects, yet is su�ciently simple in its functional form
to permit robust inference from estimated parameters.
We then transform the model through SAR image pro-
cessing procedures to arrive at an image-domain scat-
tering model.

2.1. Frequency Domain Model

We assume a data collection scenario in which a fre-
quency diverse radar measures the scattered �eld of an
object at a number of di�erent aspect angles �. At high
frequencies, the total scattered �eld can be written as
a sum of p individual scattering terms:

Es(f; �) =

pX
n=1

Es
n(f; �) (1)

Assuming far-�eld scattering, most scattering cen-
ters exhibit linear phase dependence with frequency
(the restriction to linear phase scatterers excludes phase
dispersive scattering mechanisms such as resonant cav-
ities and creeping waves), so

Es
n(k; �) = Sn(k; �) expfj2kr̂ � ~rng (2)

where k = 2�f=c is the wave number, f is frequency
in Hertz, c is the propagation velocity, � is the aspect
angle, r̂ is the unit vector in the direction of the scat-
tered �eld, and ~rn = [xn; yn] is the position vector of
the nth scattering center projected to the plane. Thus,
the phase dependence of our model describes the loca-
tion of each scattering center in the plane of the radar
measurement.

The amplitude term Sn(f; �) is a slowly varying
function. At high frequencies, amplitude dependence
on frequency is well-modeled by the geometric theory of
di�raction (GTD), and is proportional to (jk)�, where
� takes on half integer values that relate to the geom-
etry of the scattering center [7, 8] (see Table 1).

As aspect angle � varies, we assume that the scat-
tering center behaves in one of two ways: either it is
localized and appears to exist in a single point in space,
or it is distributed in space and appears as a �nite,
nonzero length current distribution. Examples of lo-
calized scattering mechanisms are trihedral re
ection,
corner di�raction, and edge di�raction. All of these
mechanisms have slowly varying amplitude as a func-
tion of aspect angle. We exploit the commonality of

Table 1: Alpha values for canonical scatterers.

� Example scattering geometries

1 
at plate at broadside; dihedral
1
2

singly curved surface re
ection
0 point; sphere; straight edge specular
� 1

2
edge di�raction

�1 corner di�raction

localized mechanisms by modeling this slowly varying
function with a damped exponential

Sn(f; �) = An exp(�2�f
n sin�) (3)

The exponential function provides a mathematically
convenient approximation containing only a single pa-
rameter. Although physical insight is used to arrive
at the exponential model, the parameter 
n has no di-
rect physical interpretation. Examples of distributed
scattering mechanisms are 
at plate re
ection, dihe-
dral re
ection, and cylinder re
ection. Each of these
scattering mechanisms has an amplitude dependence

on aspect angle that is dominated by a sinc(x) = sin(x)

x

function. We thus adopt the sinc(x) function to char-
acterize angle dependence in the scattering model for
scattering centers that are distributed:

Sn(f; �) = Ansinc (kLn sin(�� �n)) (4)

where Ln is the length and �n is the orientation angle
of the distributed scatterer.

Combining the above dependencies, we �nd that
Es
n(f; �) is modeled as one of the two following func-

tions:

Es
n(f; �) = An

�
j
f

fc

��n

sinc

�
2�f

c
Ln sin(�� �n)

�

� exp

�
�j

4�f

c
(xn cos�+ yn sin�)

�
(5)

Es
n(f; �) = An

�
j
f

fc

��n

exp(�2�f
n sin�)

� exp

�
�j

4�f

c
(xn cos�+ yn sin�)

�
(6)

where the �rst model corresponds to a distributed scat-
tering center and the second model corresponds to a
localized scattering center. Inserting equations (5) and
(6) into equation (1) gives a scattering model that is
described by the parameter set fAn; xn; yn; �ng, along
with either 
n or f�n; Lng, for n = 1; :::; p. The param-
eters provide a rich physical description of the scatter-
ers that are present in the data set. The model is based



on scattering physics and is developed to describe a
large class of scatterers while still maintaining a rela-
tively simple form.

2.2. Image Domain Model

Measured radar data collected as a function of fre-
quency and aspect is nearly always processed coher-
ently to form an image for display and interpretation.
While several variations of image formation are used, a
common approach is to transform the frequency-angle
measurements to a rectangular grid, shift to baseband,
window and zero pad, and perform a two-dimensional
inverse Fourier transform. This yields a complex-valued
baseband image (i.e., with the radar center frequency
modulation suppressed) in the (x; y) domain. Image
formation is one of the �rst steps in SAR processing,
and it is common that only the image-domain data
available to subsequent processing steps. For this and
other reasons discussed below, we are motivated to
transform our scattering model to the image domain
for parameter estimation.

The image domain provides several advantages for
estimation of the unknown parameters. First is clut-
ter suppression; much of the unwanted scattering en-
ergy is in the form of backscatter from clutter in the
scene. Desired scattering terms have responses whose
energies are localized in the image plane and clutter
is often localized away from the scattering of interest
(for example, it could come from a tree near the ob-
ject). Desired responses can thus be isolated from clut-
ter by segmenting the image and applying parameter
estimators to segmented subsets of the image. In ad-
dition, we can assume that each segmented region is
electrically isolated from other such regions, so we can
process regions in parallel using low local model orders
that describe the the number of scattering centers in
the region only. Image domain processing of each peak
region thus reduces computational complexity. Finally,
image domain processing allows insertion of the model-
based scattering analysis into a multi-staged automatic
target recognition algorithm. The model-based scatter-
ing analysis is performed only after a computationally
inexpensive prescreening stage [9], at which point typi-
cally only SAR image \chips" in regions of interest are
available to algorithms.

We have transformed the model given by equations
(1){(6) through the SAR image formation steps out-
lined above. The transformation process is straightfor-
ward but tedious and yields lengthy expressions which
we omit here; details are given in [10]. In doing so,
we require that the window function is separable in the
rectangular frequency dimensions fx and fy, and that it
is expressible as a sum of complex exponentials; many

commonly used window functions, such as rectangular,
Hamming, Hanning, and Taylor windows satisfy this
restriction.

3. PARAMETER ESTIMATION

In this section we present an approximate Maximum
Likelihood (ML) technique for estimating the param-
eters of the image domain scattering model. For each
of p scattering centers, there are six or seven real-valued
parameters to be estimated, depending on whether equa-
tion (5) or (6) is used: the amplitude and phase, An,
frequency damping rn, aspect damping 
n or length Ln

and tilt angle �n, down range position xn, and cross
range position yn. In addition, for each scattering cen-
ter we have the binary decision of whether to use the
scattering model corresponding to equation (5) or equa-
tion (6). Finally, we must address order selection.

The algorithm we use a recursive CLEAN-type al-
gorithm that successively models scattering centers,
then subtracts the modeled component from the data.
At each stage, the initial step is to segment from the
image its highest energy region; we use a \water �lling"
algorithm presented in [11]. We combine adjacent re-
gions if their minimum amplitude is close to the region
maximum values; this e�ectively forms a single region
for distributed scattering centers. We next apply an ad

hoc test, based on the shape of the region, to decide
whether to use a localized or isolated scattering model
(i.e., equation (5) or (6)). We then estimate the model
parameters by minimizing the squared error between
the model and the measured image domain data

J (�) =
X
pixels

jimage chip�model(�)j2 (7)

over the pixels in the identi�ed region only; here � is a
vector containing the parameters to be estimated and
model(�) is the image-domain analog of equation (5)
or (6). An iterative optimization procedure is used to
minimize J(�). There are many nonconvex optimiza-
tion procedures in the literature, and we choose to use
the simplex downhill method.

Once the parameter estimates have been obtained,
we compute the contribution of the estimated scatter-
ing center on the entire image domain and subtract it
from the data. We then test the energy in the residual,
and if it is above a prede�ned threshold, we apply the
entire segmentation and estimation procedure to the
residual data. The process continues recursively until
the residual energy is su�ciently small. At the conclu-
sion, the above algorithm yields estimates of scattering
parameters that describe the position, size, shape and



orientation of the scattering centers that comprise the
measured target.

We note that the least squares cost function in equa-
tion (7) is nonconvex with many local minima. There-
fore, initialization is important, and robustness is im-
proved by using low model orders on small segments
of the data. Initialization of range and cross range
positions is computed from local maxima in the im-
age chip, while rn and 
n are initialized at zero (point
scattering). We presently restrict the model order to
one for each image segment, which works well for well-
separated scattering mechanisms; of course, higher mo-
del orders could also be considered.

4. EXAMPLES

We present a measured target example which illustrates
the e�ectiveness of our image domain model at com-
pressing large measured data sets into a small set of
physically descriptive parameters. These parameters
describe the shape, position, and orientation of scat-
tering centers comprising the target response over the
measured frequency and angle spans.

First we consider the scattering from a square 
at
plate measured in the Ohio State University Electro-
Science Laboratory (ESL) Compact Range [12]. We
analyze stepped frequency measurements of the plate
for frequencies 9.5{10.5GHz in 20MHz steps and for
angles �3 degrees (in 0.5 degree steps) from broadside
to one of the edges. The plate is a two foot square
and lies in the plane of rotation. The measurement
polarization is horizontal.

Figure 1 shows an image of the plate. The image
contains three dominant scattering centers. The broad-
side response of the edge of the plate appears as a line
in the image. The two remaining corners on the back of
the plate appear as point mechanisms. The algorithm
of Section 3 is used to estimate the number of scatter-
ing centers, their type, and the corresponding parame-
ters. The algorithm correctly estimates the scattering
type, its frequency dependence parameters (� = 0 for
the front edge and � = �1 for the corners), and esti-
mates the location and length to within the accuracy
of the truth data. The residual squared error between
the measured data and the three-scatterer model re-
construction is 2.88%.

To assess parameter uncertainty, Figure 2 compares
the estimated parameters with their Cram�er-Rao bounds
(derived in [6]). For this �gure, we added Gaussian
white noise with di�erent noise variances to the mea-
sured data, and applied the above estimation algo-
rithm. For each noise variance we obtained estimates
of the scattering parameters from 50 Monte-Carlo sim-
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Figure 1: Image and estimates for plate example

ulations, and Figure 2 compares the estimated variance
to the corresponding Cram�er-Rao bounds for �ve pa-
rameters corresponding to the front edge. We see very
good agreement between the CRB and simulation using
measured data, which gives con�dence that the CRB is
a useful tool for performance prediction for our model
and algorithm.

5. CONCLUSIONS

We presented a parametric scattering model based on
physical scattering center theory. The model balances
physical �delity with simplicity in functional form to
yield small modeling error using a small model order
with physically relevant parameters. The model is trans-
formed to the image domain, where the parameters are
estimated using nonlinear least squares on image seg-
ments. The image domain processing a�ords robust-
ness to noise and clutter, computational savings by
subdividing the estimation problem into smaller prob-
lems of lower model order, and facilitates insertion into
an automatic target recognition processing stream in
which later processing stages operate on small image
chips identi�ed as regions of interest from earlier pro-



−15 −10 −5 0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

S
ta

nd
ar

d 
D

ev
ia

tio
n

Alpha           

Length (cm)     

Down Range (cm) 

Cross Range (cm)

Tilt (degrees)  

Figure 2: Comparison of Monte-Carlo simulation vari-
ance estimates to Cram�er-Rao bounds for �ve param-
eters corresponding to the front edge plate scattering
center.

cessing stages. The algorithm recursively estimates
model order, and autonomously chooses between lo-
calized and distributed scattering mechanisms. Ex-
periments using measured data, and comparisons of
simulation variances with the Cram�er-Rao bound, give
promising results.
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