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ABSTRACT

In this paper a nonlinear model is presented for

the problem of space-object imaging through at-

mospheric turbulence, and a nonlinear method is

discussed for forming �ne-resolution images from

blurred telescope data. Results from real telescope

data are also presented.

1. INTRODUCTION

The angular resolution of an optical telescope un-

der ideal circumstances is determined by the ratio

of the light's wavelength to the telescope's diam-

eter. A 1.6 meter ground-based telescope sensing

green light, for example, should resolve features

on the order of 10 inches when observing the Hub-

ble Space Telescope in its 600 km orbit. Time-

varying changes in the refractive index of Earth's

atmosphere can, however, swell this resolution by

a factor of 15 making meaningful inference about

the satellite from ground-based pictures nearly im-

possible. This \seeing" problem has plagued as-

tronomers for years.

One approach to correcting the seeing problem

is accomplished through the use of signal process-

ing techniques: a sequence of short-exposure im-

ages is recorded and the turbulence-induced blurs

are removed through post-detection processing.

The blurring model that relates the unknown ob-

ject function to the data is linear; however, the

point-spread functions for each short-exposure im-

age are neither typically know nor easily predicted,

and the parameters that determine these blurring

functions enter into the problem in a highly non-

linear manner. In addition, the nonnegativity con-

straint on the unknown object function leads to

the utilization of nonlinear restoration methods

even when the point-spread functions are known.

2. SYSTEM MODEL

Incoherent imaging systems such as photographic

cameras, microscopes, and telescopes are usually

well modeled as linear, space-invariant systems [2],

and the imagery acquired by these systems is often

consistent with the following model:

i(y) =

Z
h(y � x)o(x)dx; (1)

where y and x are two-dimensional spatial vari-

ables, i(�) is the intensity image recorded by the

instrument, h(�) is the imaging system's point-

spread function (or impulse response), and o(�)

is the intensity distribution of light that is re-

ected by, emitted from, or transmitted through a

remote object or scene of interest1. The point-

spread functions for many systems are induced

by the optical elements used to collect and fo-

cus the light. The mathematical basis for the

determination of these functions is provided by

techniques from Fourier optics [2]. For an ideal,

single-lens imaging system operating in perfect fo-

cus with narrowband light, the point-spread func-

1Actually, o(�) represents the object's intensity distribu-
tion scaled by the system magni�cation factor.



tion is mathematically determined by:

h(y) =
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; (2)

where:

� u is a spatial variable in the system's pupil

plane;

� P (�) is the system pupil function, which takes

a value of 1 within the lens aperture and 0

otherwise;

� � is the nominal wavelength of the light; and

� f is the lens focal length.

For a circular aperture of diameter D, the cor-

responding point-spread function has the mathe-

matical form:

h(y) =

����J1[2�Djyj=(�f)]

Djyj=(�f)

����
2

; (3)

where J1[�] is a Bessel function of the �rst kind,

order 1.

For systems with optical aberrations or focus-

ing errors, the pupil function can often be conve-

niently modi�ed to a generalized pupil function:

P(u) = P (u)ej�(u); (4)

where �(�) is the wavefront phase error induced

by the aberrations or focusing errors. The point-

spread function, then, is modeled as

h(y; �) =
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where the notation h(y; �) shows the point spread

function's dependence on the wavefront phase er-

ror �(�).

Wave propagation through an inhomogeneous

medium such as Earth's atmosphere can also cause

the point-spread function for an optical system to

become distorted in a manner similar to optical

aberrations and focusing errors. That is, the ef-

fects of atmospheric turbulence are often modeled

by including a time-varying phase error into the

system's generalized pupil function:

P(u; �t) = P (u)ej�t(u); (6)

so that the system is characterized by a time-

varying point-spread function:

h(y; �t) =

����
Z
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: (7)

The time-varying phase errors �t(�) are caused by

inhomogeneous temperature uctuations in Earth's

atmosphere, which in turn induce time- and space-

varying uctuations in the atmosphere's refractive

index. The correlation scales for these uctuations

in both time and space depend on many physical

factors that characterize the atmosphere; however,

correlation times of a few milliseconds and corre-

lation lengths of a few centimeters are common.

Larger correlation times and lengths are charac-

teristic of weak turbulence.

For many operational systems, it is common to

acquire a sequence of images, each being recorded

with an exposure time that is short compared with

the uctuation time of the atmosphere. Provided

that the object intensity does not change between

exposures, the recorded imagery is then modeled

as:

i(y; �tk; o) =

Z
h(y � x; �tk)o(x)dx; (8)

where �tk(�) is the atmospheric phase associated

with the kth short exposure image, and the no-

tation i(�; �tk; o) shows the explicit dependence of

the image intensity on both the atmospheric phase

error �tk(�) and on the unknown object intensity

o(�).

3. DATA MODEL

The data recorded by a typical imaging system are

directly related to the image intensity i(�; �tk; o);

however, this intensity is typically sampled by an

array of discrete detector elements and the re-

corded data are further subject to the e�ects of

internal and external background counts, nonuni-

form camera response, and other sources of camera

noise. A common data model is then:

dk[n] = Nk[n] +Mk [n] + gk[n] + b[n]; (9)



where

� n is a two-dimensional, discrete index to el-

ements of the camera's detector array;

� Nk[n] is the number of object-induced pho-

toelectrons recorded by the nth detector el-

ement during the kth exposure;

� Mk[n] is the number of internal and external

background photoelectrons recorded by the

nth detector element during the kth expo-

sure;

� gk[n] is the signal-independent detector noise

for the nth detector, usually induced by the

detector's electronics; and

� b[n] is a deterministic bias.

In addition, the data are usually statistically in-

dependent across detector elements.

The number of object-induced photoelectrons

recorded by the nth detector element is usually

modeled as a Poisson random variable whose mean

is

E fNk[n]g = a[n]

Z
Yn

i(y; �k; o)dy; (10)

where Yn is the spatial region over which the nth

detector element acquires data, and a[n] is a non-

negative gain parameter that accounts for the ef-

�ciency (possibly nonuniform) of the detector el-

ements. For many systems, the image intensity

varies slowly with respect to the regions fYng,

and the integrating operation is approximated by

a sampling operation:

E fNk[n]g ' jYnja[n]i(yn; �k; o); (11)

where yn and jYnj denote the location and area,

respectively, of the nth detector element. Further-

more, the object function is often approximated

over a discrete grid so that the integral relating

the image intensity to the object function is ap-

proximated by the summation:

i(yn; �k; o) =
X
m

h(yn � xm; �k)o(xm); (12)

and the object samples at the discrete sample points

fxng are the parameters to be estimated. The

number of background-induced photoelectrons ac-

quired by the nth detector element is also a Pois-

son random variable with the mean ib[n], and the

detector noise gk[n] is usually modeled as a zero-

mean Gaussian variable with variance �2[n]. The

background mean ib[n], detector noise variance

�2[n], and deterministic bias b[n] are usually deter-

mined through a controlled calibration procedure.

Because Eq. (9) contains a mixture of Pois-

son and Gaussian random variables, the proba-

bility density for the measured data is a compli-

cated function that involves an in�nite sum [4],

[3]. If, however, the CCD read-out noise variance

is large2, then the pre-processed data:

edk[n] = dk[n]� b[n] + �2[n]; (13)

are approximately Poisson distributed with the

mean function

Ef edk[n]g = i(yn; �k; o) + �2[n]: (14)

4. MAXIMUM-LIKELIHOOD

ESTIMATION

If the unknown object function at the sample points

fxmg and phase errors �k(�) are all treated as de-

terministic, but unknown, parameters, then the

method of maximum-likelihood estimation can be

applied for the simultaneous estimation of the un-

known object and phase errors. Note that the

phase errors are related to the data mean in a

highly nonlinear manner. This, coupled with the

fact that the object intensity must be a nonneg-

ative function, makes the estimation of the phase

errors and object intensity a highly nonlinear prob-

lem.

A numerical algorithm based on the expectation-

maximization (EM) method [6] has been described

in [1] and [7] for solving this estimation problem.

The results of applying this method to real tele-

scope data are summarized in the following sec-

tion.

5. RESULTS WITH REAL DATA

Telescope data were acquired by the Air Force

Maui Optical Station (AMOS) on March 9, 1995

2See, for example, Ref. [5].



Table 1: Telescope and imaging system parame-

ters for the ground-based imagery of the Hubble

Space Telescope.

Aperture diameter: 1.6 m
Field-of-view: 6 arc seconds

Detector sampling: 128 � 128
Exposure time: 8 ms per exp.

Object photoelectrons: 2.8 million per exp.
Background photoelectrons: 0.5 million per exp.

CCD read-out noise: 9 photoelectrons rms
CCD conversion factor: 7 photoelectrons/count

Exposures per restoration 16 (656 exposures total)

and subsequently processed by the technique de-

scribed in [1] and [7]. The telescope and imag-

ing system parameters are listed in Table 1. The

telescope's observations were of the Hubble Space

Telescope in its 600 km orbit. 656 image frames

were taken with an 8 ms exposure time; four of

these images are shown in Figure 1. The 656 im-

ages were partitioned into 41 sets of 16, and each

set in the partition was used to obtain one object

restoration. Four of these restorations are shown

in Figure 2. Each restoration required approxi-

mately 15 minutes of processing on 9 nodes of an

IBM SP2 at the Maui High Performance Comput-

ing Center.

6. SUMMARY

A nonlinear model has been developed for the prob-

lem of space-object imaging through atmospheric

turbulence, and a nonlinear, maximum-likelihood

estimation method has been described for form-

ing �ne-resolution images from blurred telescope

data. Current work on this problem includes: a

reduction of the computation time by a more ef-

�cient utilization of the processing architecture,

and through the utilization of numerical methods

with faster convergence rates; and the use of image

models and phase-aberration priors for improved

robustness in low-light (high noise) situations.

Figure 1: Four short exposure images of the Hub-

ble Space Telescope acquired with a ground based

telescope.

Figure 2: Four restored images of the Hubble

Space Telescope.
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