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ABSTRACT

We describe measurements, models, and algorithms for

several signal reconstruction problems arising in the

structural biophysics of so-called spherical viruses.

1. INTRODUCTION

In this paper we describe several signal reconstruction

problems that arise during the determination of the

3D structure of so-called spherical viruses. Spherical

viruses are viruses with a shell of protein (the capsid)

surrounding an inner core of nucleic acid. The capsid

is \crystalline" in the sense that it is constructed from

many repetitions of the same polypeptides and the en-

tire capsid is invariant under the rotational symmetries

of the icosahedron. The icosahedron, as shown in Fig-

ure 1, is constructed from 20 equilateral triangles and

has 60 rotational symmetries: a 5-fold axis where 5 tri-

angles meet, a 3-fold axis through the center of each

triangle, and a 2-fold axis at the midpoint of each edge

between two triangles. A typical outer radius of the

capsid is in the range 102{103�A.

2. MEASUREMENT PROCESSES

We consider three types of measurements: (1) x-ray

di�raction from crystals of viral particles, (2) x-ray

scattering from aqueous solutions of viral particles, and

(3) cryo electron microscopy images of viral particles.

Let �(x) [with Fourier transform P (k)] be the elec-

tron density in the crystal in real space or equivalently

object space. P (k) in reciprocal space or equivalently

Fourier space is impulsive because �(x) is periodic. The

lattice of impulse locations is called the reciprocal lat-

tice. The data in an x-ray crystal di�raction experi-

ment, called intensities, are the magnitude-squared of
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Figure 1: An Icosahedron. One symmetry axis of each

type|2-, 3-, and 5-fold|is shown.

the weights on the impulses of P (k). One period of �(x)

is called the unit cell and occupies the volume Su. Let

�u(x) [with Fourier transform Pu(k)] be the electron

density in the unit cell [i.e., �u(x) = �(x) for x 2 Su
and = 0 otherwise] which is therefore bandlimited in

real space. The intensities are samples of jPu(k)j
2.

Su is described in terms of a matrix U 2 R3�3 by

Su = fU� : � 2 [0; 1]3g where U is in general not an

orthogonal matrix. De�ne � = (2�)3=j det(U)j. By

the de�nition of the unit cell, �(x) =
P

n2Z3 �u(x �

Un) and therefore the Fourier transform is P (k) =

Pu(k)�
P

n2Z3 �(k� 2�U�Tn). Therefore the recipro-

cal lattice is the points 2�U�Tn for n 2 Z3 and the in-

tensities (denoted by Fn) are Fn = jPu(2�U
�T
n)j2�2.

Note that the matrixU is known before the processing

described in this paper is performed.

The crystal is typically 50% by volume disordered

solvent, with electron density �0, and 50% by volume

ordered viral particles. Therefore, the total electron

density in the crystal is �(x) = �0+ ~�(x) where ~�(x) is

the perturbation on the solvent electron density due to

the viral particles. The term �0 contributes only to the



DC Fourier series coe�cient and this coe�cient is not

measured because it coincides with the undi�racted x-

ray beam. Therefore the data can be considered to be a

function of ~�(x). Because �0 does not contribute to the

data and the icosahedral symmetry of the viral particle

determines the symmetries of ~�(x), in the remainder

of this paper we focus on ~�(x) rather than �(x) and

for notational simplicity we drop the tilde from ~�(x).

Note, however, that the positivity condition �(x) � 0

is equivalent to ~�(x) � ��0.

Let �v(x) [with Fourier transform Pv(k)] be the

electron density perturbation on the solvent background

created by the presence of one virus particle located at

the origin and oriented in the standard orientation [1,

2]. The function �v(x) has icosahedral symmetry and

therefore, by direct calculation, so does Pv(k). A gen-

eral formula for �u(x) for a unit cell containing Q virus

particles is �u(x) =
PQ

q=1 �v(T
�1
q (x � xq)) where xq

(xq 2 R3) is the position of the origin of the qth virus

particle and Tq (Tq 2 R3�3, T�1q = T
T
q , det(Tq) =

+1) is a rotation matrix that describes the orienta-

tion of the qth virus particle relative to the standard

orientation. The corresponding Fourier transform is

Pu(k) =
PQ

q=1 exp(�ik � xq)Pv(T
�1
q k) and therefore

the intensities are samples of

G(k) = �2

�����
QX
q=1

exp(�ik � xq)Pv(T
�1
q k)

�����
2

:

Because the particles in the solution are randomly

positioned and randomly rotated, the standard model [3]

for the solution x-ray scattering is that the measured

intensity is the spherical average of the magnitude-

squared of the Fourier transform of the electron density

in one particle. Therefore, in terms of the previous no-

tation, the solution x-ray scattering [denoted by I(k)]

is

I(k) =
1

4�

Z
jPv(k)j

2d
0

where
R
d
0 denotes integration over solid angles, d
 =

sin(�0)d�0d�0 in spherical coordinates, and k = jkj. No-

tice that data is available continuously in k, that is,

there is no sampling.

The cryo electron microscopy (EM) data is related

to the 2D projection onto the object plane [denoted

by �(x; y)] of the 3D scattering density. Let �i(x; y) be

the image. Let �(k; �0) and �i(k; �0) be the 2D Fourier

transforms of �(x; y) and �i(x; y) where polar coordi-

nates are used for the transforms. Then, �i(k; �0) =

��(k; �0)A(k) 2
�
f(k) sin �(k) where A(k) is the aper-

ture function, � is the electron wavelength, f(k) is

the atomic scattering factor for elastic scattering, and

�(k) is the phase shift due to spherical aberration and

defocusing. The form of the phase shift is known:

�(k) = (2�=�)(�Csk
4=4+�fk2=2) where Cs is the co-

e�cient of spherical aberration and �f is the deviation

fromGaussian focus [4]. This theory can be elaborated

to include the e�ects of specimen thickness (leading to

varying levels of defocus), chromatic aberration, par-

tial coherence, etc. Based on the projection slice theo-

rem in 3D, �(kx; ky) = Pv(R�;�;
k)jk=(kx;ky;0)T where

(�; �; 
) are Euler angles describing the projection and

R�;�;
 is the corresponding rotation matrix.

Two central problems in cryo EM imaging are the

unknown projection orientation and the sensitivity of

the specimen to the electron beam. The goal is to re-

construct the 3D scattering density of the 3D specimen.

The microscope produces an image that is closely re-

lated to the 2D projection �(x; y) as described above.

Because the orientation of the 3D specimen on the stage

of the microscope is not known, it follows that the im-

age is related to an unknown-orientation 2D projection

of the 3D specimen. This would not be a problem if

the user could rotate the 3D specimen and take a se-

ries of images with known relative orientation, which is

essentially what is done in medical imaging. However,

this approach is not possible in cryo EM because of the

sensitivity of the 3D specimen to the electron beam

(and also due to technical problems with the range of

achievable rotation). Therefore, taking multiple images

of one 3D specimen in di�erent orientations is replaced

by taking one (or a very few) images of each of many

identical 3D specimens where each specimen is in a ran-

dom unknown orientation. Therefore the orientation

parameters (�; �; 
) are not known.

3. VIRAL MODELS

The viral particle1 has several characteristics:

1. Icosahedral constraint: �(x) has icosahedral sym-

metry, that is, �(R�1� x) = �(x) for all x 2 R3 and

� 2 f0; : : : ; 59g.

2. Support constraint: �(x) = 0 for jxj � R� and

jxj � R+.

3. Real-valued constraint: �(x) is real.

4. Positivity constraint: �(x) � ��0 for all x 2 R3.

In addition, it is desirable to have a mathematical rep-

resentation of �(x) from which P (k) can be computed

analytically since this computation is a three-dimensional

integral.

1In the remainder of this paper, �(x) and P (k) mean �v(x)
and Pv(k).



We have considered three di�erent mathematical

models for �(x). All depend in an important way on

icosahedral harmonics. Because of the icosahedral sym-

metry (a rotational symmetry) and the maximum ra-

dius for the region in which �(x) may be non-zero,

it is natural to use spherical coordinates in both real

and reciprocal spaces. In order to easily compute the

Fourier transform relating �(x) to P (k), it is natural

to de�ne real-space basis functions that are products

of harmonic angular functions and spherical-Bessel ra-

dial functions. The angular function determines the

rotational symmetry of the basis function. Spherical

harmonics [5, Eq. 3.53], denoted by Yl;m(�; �) (l 2

f0; 1; : : :g, m 2 f�l; : : : ;+lg) are a complete orthonor-

mal (CON) basis for L2 functions on the sphere. How-

ever, �(x) must have icosahedral symmetry and there-

fore we only need a CON basis for the subspace of icosa-

hedrally symmetric L2 functions on the sphere. Such a

basis is provided by icosahedral harmonics [6, 7, 1, 2],

denoted by Tl;n(�; �) (l 2 f0; 1; : : :g, n 2 f0; 1; : : : ; Nl�

1g). Use of icosahedral rather than spherical harmonics

means that any superposition of these basis functions

has icosahedral symmetry and that the number of basis

functions for each l is markedly decreased, speci�cally,

Nl (for which formulas are known [6]) versus 2l + 1.

The �rst model, the so-called envelope model, is a

piecewise constant model of �(x):

�(r; �; �) =

8<
:
�c; 0 � r < 
in(�; �)

�s; 
in(�; �) � r < 
out(�; �)

0; 
out(�; �) � r

:

Notice that this model does not allow overhanging re-

gions on the surface of the virus or voids within the

virus and is therefore restricted to low resolution. Math-

ematically, a piecewise constant model with a connected

region is less restrictive while a convex region is more

restrictive. The icosahedral symmetry of the virus im-

plies that 
in(�; �) and 
out(�; �) must have icosahedral

symmetry. Therefore, both can be expanded in an in-

�nite sum of icosahedral harmonics and we use a �nite

truncation of the sum as the basis for computation:


in(�; �) =

LinX
l=0

Nl�1X
n=0


inl;nTl;n(�; �);


out(�; �) =

LoutX
l=0

Nl�1X
n=0


outl;n Tl;n(�; �):

In 2D, an example of this type of model is shown in Fig-

ure 2. The Fourier transform P (k) and solution x-ray

scattering I(k) can be computed through the following

Figure 2: An example of an envelope model in 2D.

equations:

P (k) = 4�

1X
l=0

Nl�1X
n=0

(�i)lal;n(k)Tl;n(�
0; �0)

I(k) = 4�

1X
l=0

Nl�1X
n=0

a2l;n(k)

al;n(k) =
1

k3

Z �
�s�l(k


out(�; �))

+ (�c � �s)�l(k

in(�; �))

�
Tl;n(�; �)d


�l(x) =

Z x

0

y2jl(y)dy:

The second model, the so-called orthonormal ex-

pansion model, is an orthonormal expansion of �(x)

in terms of icosahedral harmonics and spherical Bessel

functions. There is no longer a piecewise-constant con-

straint. The de�nitions are:

�(r; �; �) =

1X
l=0

Nl�1X
n=0

"
1X
p=1

cl;n;pHl;p(r)

#
Tl;n(�; �)

Hl;p(r) =
yl(
l;pR+)jl(
l;pr) � jl(
l;pR+)yl(
l;pr)

nl;p

nl;p =

s
R�[jl(
l;pR�)]2 � R+[jl(
l;pR+)]2

2R+

4
l;pR�[jl(
l;pR�)]

2

where jl and yl are spherical Bessel functions of the �rst

and second type, respectively, and where 
l;p for p =



1; 2; : : :are the roots of jl(
R�)yl(
R+)�jl(
R+)yl(
R�) =

0 and Sturm-Liouville theory guarantees that the min-

imum 
 (i.e., 
l;1) is �nite.

The Fourier transformP (k) and solution x-ray scat-

tering I(k) can be computed through the following equa-

tions:

P (k) = 4�

1X
l=0

Nl�1X
n=0

1X
p=1

cl;n;phl;p(k)(�i)
lTl;n(�

0; �0)

I(k) = 4�

1X
l=0

Nl�1X
n=0

"X
p

cl;n;phl;p(k)

#2

hl;p(k) =
R2
+H

0

l;p(R+)jl(kR+)� R2
�
H0

l;p(R�)jl(kR�)

k2 � 
2l;p
:

The third model, the so-called non-parametric model,

is a generalization of the orthonormal expansion model.

In this generalization, the function

Al;n(r) =

1X
p=1

cl;n;pHl;p(r)

is replaced by an unspeci�ed function Al;n(r) satisfying

Al;n(r) = 0 for r < R� and r > R+.

The Fourier transformP (k) and solution x-ray scat-

tering I(k) can be computed through the following equa-

tions:

P (k) = 4�

1X
l=0

Nl�1X
n=0

(�i)lal;n(k)Tl;n(�
0; �0)

I(k) = 4�

1X
l=0

Nl�1X
n=0

a2l;n(k)

al;n(k) =

r
2

�

Z
1

0

r2Al;n(r)jl(kr)dr

(spherical Hankel transform).

4. RECONSTRUCTION ALGORITHMS

In order to determine the 3D structure of the virus, it

is necessary to estimate the following unknowns:

� Envelope model: �s, �c, f

in
l;ng, f


out
l;n g.

� Orthonormal expansion model: fcl;n;pg (assume

R� and R+ are known).

� Non-parametric model: fAl;n(r)g (assume R�
and R+ are known).

Two major techniques have been used: nonlinear weighted

least squares for the envelope and orthonormal expan-

sion models [8] and a set-projection algorithm for the

nonparametric model [9]. The nonlinear least squares

problems are solved by using the Levenberg-Marquart

algorithm with analytical gradients.

5. NUMERICAL EXAMPLES

In Figure 3 we show numerical results for solution x-ray
scattering data fromCowpea Mosaic Virus (CpMV) [10].
In the left and right hand columns of Figure 3 we show
results based on the envelope and the orthonormal ex-
pansion models, respectively. The top image, which
is common to both columns, shows the surface of the
virus based on the known atomic-resolution structure
for this virus. The lower four images show reconstruc-
tions based on synthetic and experimental data. Con-
sidering that the solution x-ray scattering data is 1D
while a 3D reconstruction is desired, the reconstruc-
tions are surprisingly accurate, in large part due to the
presence of the icosahedral symmetry.
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Figure 3: Numerical results for Cowpea Mosaic Virus. The parameters for the envelope model calculations are

Lin = Lout = 10 which is 7 parameters and gives roughly 40�A resolution. The parameters for the orthonormal

expansion model calculations are L = 12, P0;0 = 3, and P6;0 = P10;0 = P12;0 = 2 and the surface plotted is

fx : �̂(x) = 0:1maxx0 �̂(x0)g.


