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ABSTRACT

A combination �lter structure involving wavelet transform
based denoising methods and K�nearest neighbor (K-NN)
type operations is proposed and studied. Performance anal-
ysis of this �lter shows its high e�ciency in suppressing
mixed white Gaussian and impulsive noises. At the same
time the proposed �lter possess moderate computational
complexity.

1. INTRODUCTION

The most widely used methods of image restoration in the
presence of impulsive type noises are based on rankings of
the pixels in neighborhood according to brightness. Spa-
tial nonlinear �lters (see, [1, 5, 6, 10]), preserve the image
sharpness and remove e�ciently certain kinds of impulsive
noise, like \shot" noise (when individual pixels corrupted
or missing from image).

Among such techniques note the K nearest neighbor
(K�NN) �lter introduced by Davis and Rosenfeld [5]. This
�lter performs well for both cases of additive and multiplica-
tive noise [8]. However, an application of the K-NN �lter
was restricted due to its main drawback - very high com-
putational time. A modi�cation of the K�NN �lter with
much lower (of about 20 times less) complexity has been
suggested in [9]. In [2] another modi�cation of the K�NN
�lter has been proposed which for even slightly corrupted
images gives practically the same output as the K�NN �l-
ter does, but is even simpler in implementation compared
to the modi�cation of [9]. An e�cient bit-serial implemen-
tation of this modi�ed K�NN �lter is developed in [2].

On the other hand, for removing additive white Gaus-
sian noise from signals and images, wavelet transform based
denoising methods have been proven to perform excellent
[4]. They work pretty well also in several applications where
the error is neither white nor Gaussian [11]. These applica-
tions are noise reduction (de-noising) of synthetic aperture
radar (SAR) signals, medical and geophysical signals, as
well as removing blocking artifacts in images of JPEG de-
coded signals [11]. However, the Donoho's method (wavelet-
based) for noise reduction is not working in the case when
image is corrupted by even a small percentage of impulses.
It comes natural to incorporate positive sides of wavelet de-
noising methods and K�NN type �ltering operations in a
uni�ed �ltering structure for removing mixed type noises.

In this paper we propose a novel �lter structure based
on the superposition of a modi�ed K�NN �lter and the

discrete wavelet transform based �lter. The combined �lter
performs well in suppressing mixed impulsive and Gaussian
noises. At the same time the proposed �lter can be imple-
mented with moderate computational complexity.

2. THE FILTER STRUCTURE

In general, the �lter structure we study in this paper is
formed as the superposition of an impulse removal �lter G
and a wavelet transform based �lter F :

Y = F (G(X)); (1)

where X = fx(i; j); i = 1; 2; : : : ; I; j = 1; 2; : : : ; Jg; x(i; j) 2
f0; 1; :::;R � 1g; R = 2r ; is an observation of an image
U = fu(i; j); i = 1; 2; : : : ; I; j = 1; 2; : : : ; Jg corrupted by
a mixed white Gaussian and an impulsive noise, and Y =
fy(i; j); i = 1; 2; : : : ; I; j = 1; 2; : : : ; Jg; is the output of the
�lter which tends to estimate the image U:

2.1. The wavelet denoising method

As the �lter F in (1) consider the noise reduction (denois-
ing) method by nonlinear thresholding in the wavelet do-
main proposed by Donoho and Johnstone [4]. This method
consists of the following three steps (we consider here the 1-
D case; in the case of 2-D separable transform the image is
�rst transformed row-by-row and then column-by-column):

1. Transform the noisy data into an orthogonal domain,

z = Wx (2)

2. Apply thresholding to the resulting coe�cients, which
will result in suppression of the coe�cients of lower energy,
using so-called hard thresholding or soft thresholding:

ẑ = Th(z; t) =
n
z; jzj � t;
0; jzj < t

(3)

ẑ = Ts(z; t) =
n
sgn(z)(jzj � t); jzj � t;
0; jzj< t:

(4)

3. Transform back to the original domain, performing
the inverse transform:

y = W�1ẑ: (5)

However, applying this classical wavelet de-noising scheme
in practice, one may end up with some artifacts near singu-
larities (the pseudo-Gibbs phenomena in the neighbourhood
of discontinuities). One way to overcome this problem is to



use undecimated (or shift-invariant) wavelet transforms [4],
which can be done according to the following simple strat-
egy: wavelet de-noising is applied for all circular shifts of a
signal, each of the particular result of de-noising is unshift,
and, �nally, the average of all these results is obtained [4].

Donoho has shown that soft thresholding is the l2 opti-
mal, and the resulting error is within a logarithmic factor of
the ideal risk (which is a measure of performance of an ideal
scheme). Hard thresholding, however, does not guarantee
the smoothness property but have better l2 performance in-
stead, especially for shift-invariant wavelet transform-based
schemes. As an alternative to these two di�erent threshold-
ing strategies we will use middle case, by applying semi-hard
\staircase" thresholding given by

ẑ =
1

m

mX
i=1

Th(z; ti); (6)

where Th(Y; ti) are hard threshold operators de�ned by (3).
A proper selection of thresholds ti is quite important.

There are many di�erent ways to do that. Donoho gives
a "universal threshold" [4]. As a value for t the Donoho's

threshold is t = �
p
2log(n); where n is the length of the

signal x, x = u+�n; u is the corresponding noiseless signal,
and n is an additive Gaussian white noise. In general, ti
can be selected as ti = ci�; where ci are some constants.

2.2. The impulse removal �lter

Speci�c to the �lter structure of (1) is that the impulse
removal �lter G should not destroy frequencies in the im-
age which is essential for the second stage, in the wavelet
de-noising1 . This means that while removing impulses the
�lter should not change image pixels where no impulse has
caused. Such a �lter G would not blur edges which can-
not be reconstructed at the second stage. Thus, it is de-
sirable to apply such an impulse removal �lter at the �rst
stage that process image pixels with di�erent �ltering ac-
tions depending on the probability of appearing impulses in
the neighbourhood of the given pixel. This kind a strategy
is used in state-conditioned �lters in contrast to the case
of conventional rank-order based �lters [1, 7] where every
pixel is processed uniformly.

In state-conditioned techniques the �ltering procedure
is conditioned on the current state of the algorithm [1, 6].
The output of the �lter is de�ned as:

y(i; j) =

KX
k=1

�k;s(i;j)uk(i; j); i = 1; :::; I; j = 1; :::; J (7)

where uk(i; j); k = 1; ; ; :;K; are di�erent estimates of the
image pixel u(i; j); s(i; j) 2 f1; :::;Sg is a state variable
that classi�es the current pixel to one of the S categories,
and �k;s(i;j) are the scalar coe�cients corresponding to each
category. For example, the ROM �lter proposed in [1] uses
u1(i; j) = x(i; j) and u2(i; j) = ROM(i; j) as the estimates,

1Otherwise, a problem of �ndingG which transfers the image
in a form more suitable to wavelet denoising rather than the

given observation after removing impulses could be considered.
However this is a very complicated task.
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Figure 1: The general structure of the impulse removal �lter

where ROM(i; j) is the rank-ordered mean (the average
of the fourth and �fth order statistics within the (3 � 3)
window excluding the central pixel).

The minimum-maximum exclusive mean (MMEM) �l-
ter recently introduced in [6] uses four di�erent estimates:

u1(i; j) = x(i; j); u2(i; j) = mean(U (3)(i; j)); u3(i; j) =

mean(U (5)(i; j)); and u4(i; j) = mean(Y (i�1; j�1); Y (i�
1; j); Y (i; j� 1)); where U (p)(i; j); p = 3; 5; is a set of pixel
values which is formed by removing some pixels from the
(p � p)�window V (p)(i; j) centered at x(i; j) according to
a strategy based on computation of minimums and max-
imums over V (p)(i; j). A comparative study of this �lter
with other existed �lters [6] has demonstrated su�ciently
high performance in removing impulsive noises from highly
corrupted images. However, its performance becomes rela-
tively worse for images corrupted with small percentage of
impulses which is often the case in real applications.

The general structure of the �lter which we propose to
incorporate into the combination structure of (1) is pre-
sented in Figure 1. For every pixel x(i; j); i = 1; :::; I; j =

1; :::; J; its neighborhood within the (p�p) window V (p)(i; j)
is analysed. An impulse detector is used to �nd the posi-
tions of impulses within V (p)(i; j). Di�erent techniques can
be used for this purpose [1, 6]. (Note that in application
to restoration of images with missing samples there is no
need for impulse detector since positions of missing sam-
ples are known.) If the pixel x(i; j) is not recognized as an
impulse then no �ltering action is applied and the output
of the �lter is the input pixel x(i; j) itself. Otherwise, the
output of the �lter is obtained as the result of an operation
A applied to the set U (p)(i; j): This set is obtained from the

window V (p)(i; j) by discarding some of the pixels accord-
ing to the mask set obtained by the impulse detector. (Note
that assuming positions of impulses are ideally detected (as

in the case of missing samples) the set U (p)(i; j) will not
contain impulses.) However, if there is no su�cient number

of pixels in the set U (p)(i; j) a causal predictor (linear or
nonlinear) is used instead of the operation A: The dashed
line in Figure 1 indicates that the �ltering operation A can
be incorporated in the impulse detector.

Thus, the actual �ltering action in the proposed struc-
ture of the impulse removal �lter of Figure 1 is performed
in the block A: Below we describe a modi�ed K�nearest
neighbor type operation which we use as the basic opera-
tion of the block A in our experiments. We call the resulting
�lter G the selective K�NN �lter.

Let U (p)(i; j) = fx(1); x(2); : : : ; x(M)g; when the �lter's



window is located at the pixel x(i; j); i = 1; :::; I; j =
1; :::; J; and let two integers K = [�M ] (M = jU j;0 < � � 1)
and xc 2 f0; :::;R� 1g be given. Some possible choises for

xc are e.g. the center pixel x(i; j) within the window V (p),

the median within V (p); the averave of selected samples
within V (p); etc. Consider the set D = D(i; j) = fd(m) =
jx(m) � xcj;m = 1; 2; : : : ;Mg and let d(K) be the K�th
order statistic (the K�th smallest value) within D. The
result of the modi�ed K�NN type operation is de�ned as:

y = A(U (p)) =

"
MX

m=1

f(m)

#
�1

MX
m=1

f(m)x(m); (8)

where

f(m) =
n
1 if d(m) � d(K)

0 otherwise
; m = 1; 2; :::;M: (9)

In the partricular case where U (p)(i; j) = V (p)(i; j) (no
pixel is discarded) and � = 1 this becomes simple averaging

procedure. In another case where U (p)(i; j) =

V (p)(i; j)nfx(i; j)g and xc = x(i; j) the modi�ed K�NN
operation of (8) performs very similar to the operation of
the classical K�NN �lter, especially in the presence of a
noise [2]. However, while the latter one is computationally
very complicated, the former one allows a simple bit-serial
implementation which we summarize in the next subsection.

2.3. Implementation of the modi�ed K�NN
type operation

Finding the mask set f(m); m = 1; 2; :::;M is the most
complicated part in implementation of the modi�ed K�NN
type �ltering operation. In a straightforward implementa-
tion the mask set could be found by �nding the K�th order
statistic in the set D and then using M additional com-
parisons. This is une�cient, especially because the sliding
window designs for computation of order statistics cannot
be utilized. We show that a binary-tree search technique
resulting in an e�cient bit-serial implementation of this �l-
ter can be applied. In our implementation we �nd the mask
set fm without �nding the value of the K�th order statistic
in D. The proposed binary-tree search algorithm for com-
putation of the output of the modi�ed K�NN �lter over a
�xed window can be summarized as follows.

Algorithm 1.

Input. A set U = fx(1); x(2); : : : ; x(M)g and an integer
xc; x(m); xc 2 f0; 1; : : : ; 2r � 1g:
Output. y0 =

�PM

m=1
fm
��1 �PM

m=1
fmx(m)

�
, where f(m)

are de�ned by (9).
Computation (pseudocode).
Step 1.

For m = 1; 2; : : : ;M set d(m) = jx(m)� xcj:
Step 2.

For m = 1; 2; : : : ;M set fm = 1:
Step 3.

Set T = 2r�1 =� Note that the numbers of bits in d(m)
and x(m) are the same, r �=.
Step 4.

For s = 1; 2; : : : ; r do

LS

out1δ1 s,

f1δ1 s,

f1

LS

out2δ2 s,

f2δ2 s,

f2

LS

outMδM s,

fMδM s,

fM

Block for summing
and comparing.

h 1if fmδm 1,∑ K≥=

hThe output is h,
where

and h=0 otherwise

.

.

.

.

.

(a)

δm s,

.
h

z-1 TG fm

.

(b)

Figure 2: The bit-serial architecture for the modi�ed
K�NN type operation.

Begin

For m = 1; 2; : : : ;M set

dm;s =
n
1 if d(m) < T

0 otherwise
; (10)

If
PM

m=1
fmdm;s � K

then set T = T � �2r�s�1
�
and

For m = 1; 2; : : : ;M set fm = dm;s

else set T = T +
�
2r�s�1

�
End

Step 5.

Compute

y
0 =

"
MX

m=1

fm

#
�1 " MX

m=1

fmx(m)

#

Stop.

Algorithm 1 can be e�ciently implemented in a bit-
serial manner where the sequence fdm;sg is obtained by
examining the bits of di�erences d(m) without introducing
the parameter T and without performing the comparisons
of (10). Let (�m;1�m;2:::�m;r) be the binary code of d(m);
i.e. d(m) =

Pr

s=1
�m;s2

r�s:
Proposition. The binary sequence dm;s; m = 1; :::;M;

s = 1; :::; r of Algorithm 1 can be obtained from the binary
codes of di�erences d(m) according to the following rules:

dm;s =

8><
>:

0 if 9q 2 f1; 2; :::; s� 1g such thatPM

m=1
f
(q)
m dm;q < K and dm;q = 0

�m;s otherwise

;

(11)

where � is the binary negation of �; f (q)m =
Q

v2Vq
dm;v;

Vq � f1; 2; :::; q � 1g is the subset of indices such thatPM

m=1
f
(v)
m dm;v � K.

With this proposition Algorithm 1 can be implemented
in the bit-serial architecture shown in Figure 2. Bits of



the di�erences are serially entered to the architecture. The
values of all the 
ags are set to high when a new window of
di�erences enters to the circuit Then they are recursively
changed according to (11). This is done in logic switches
(LS) which are driven by the output h of the block for
summing and comparing. A possible realization of logic
switches is shown in Fig. 3(b).

Thus the mask set fm is obtained in r = logR cycles,
where at every cycle only one compare and M � 1 adds
are implemented. Thus the total complexity of the modi-
�ed K�NN type operation using the proposed implemen-
tation is (r + 2)(M � 1) adds and r compares (2(M � 1)
adds are needed for summings in (8)). For comparison the
histogram-based algorithm of [9] for another modi�cation

of the K�NN �lter requires 2q compares, 2
p
M + 5q � 2

adds, and 4(q � 1) multiplies where q is equal to the dif-
ference between the values of the K�th and the �rst order
statistics in the �lter's window. It may vary between 0 and
R = 2r. It should be also noted that the algorithm of [9]
is di�cult to parallelize and is not suitable for VLSI imple-
mentation whereas our method is implemented in a simple
bit-serial architecture.

3. PERFORMANCE ANALYSIS AND

EXPERIMENTAL RESULTS

We investigated the performance of the proposed �lters for
restoration of images corrupted by a mixed noise. Exten-
sive simulations have been caried out with a variety of test
images and noise models.

Let X = fx(i; j); i = 1; 2; : : : ; I; j = 1; 2; : : : ; Jg; be
an observation of an image U = fu(i; j); i = 1; 2; : : : ; I;
j = 1; 2; : : : ; Jg corrupted by mixed noise consisting of i.i.d.
zero mean, white Gaussian noise �n(i; j); n(i; j) i:i:d

�
N (0; 1);

with the standard deviation � and an impulsive noise.
Combination of the proposed impulse removal �lter based

on modi�ed nearest neighbor type operation with wavelet
denoising scheme makes the resulting �lter very e�cient
and robust also for removing mixed Gaussian and impulsive
type noises. In our experiments we choose 8-bit 256 � 256
"Goldhill" as a test image. This image was distorted by
mixed Gaussian noise (�2 = 100) and \salt-and-pepper"
noise (10%) and the restored image obtained by using our
proposed combined �lter. Our proposed 3 � 3 impulse
removal �lter, MMENN was based on k-nearest neighbor
operation using min-max impulse detecting strategy [6].
We use two dimensional translation invariant orthogonal
wavelet �lter banks (12-taps "Coi
et"), and as the thresh-
olding strategy - semi-hard thresholding. The PSNRs and
MAEs for the noisy and restored images are, respectively,
PSNR(noisy image)=15.3 dB, PSNR(restored image)=29.9
dB, MAE(noisy image)=19.7, MAE(restored image)=5.9
(see Figure 3).

In Table 1 we show MAEs and PSNRs obtained by
applying di�erent �lters to image "Goldhill" corrupted by
mixed Gaussian (variance 100) and "salt-and-pepper" (4%
impulses) noise. We have choosen the following �lters: MED,
3 � 3 median �lter, LUM �lter (3 � 3) with parameters
k = 3; l = 5 [7], k-nearest neighbor �lter (KNN) (3� 3) [5].
Table 2 and Figure 4 show the results of applying above
mentioned �lters with wavelet denoising postprocessing.

Table 1: PSNRs and MAEs obtained by di�erent nonlin-
ear �lters for corrupted image "Goldhill" (mixed Gaussian
(variance 100) and impulsive \salt-and-pepper" (4% im-
pulses) noise)

MED KNN LUM
PSNR 27.14 28.16 27.94
MAE 7.66 6.95 7.01

Table 2: PSNRs and MAEs obtained by di�erent nonlinear
�lters with wavelet denoising postprocessing for corrupted
image "Goldhill" (mixed Gaussian (variance 100) and im-
pulsive "salt-and-pepper" (4% impulses) noise)

MED KNN LUM MMENN
PSNR 27.43 28.34 28.61 30.49
MAE 7.32 6.74 6.30 5.58
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Figure 3: Left : Noisy "Goldhill" image (corrupted by
Gaussian with variance 100 and "salt-and-pepper" 10 %)
Right : Restored "Goldhill" image by applying our com-
bined �lter
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