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ABSTRACT

In this paper we describe a nonlinear criterion designed

for the detection of changes ("edges") in signal or image

properties in a framework that we call the distinction

evidence method. It was introduced as a generic

feature extraction tool for image modeling. We show its

capabilities when applying it to segmentation, texture

border �nding and object correlation problems.

1. INTRODUCTION

In a previous article [1] we considered the criterion in

an edge �nding framework and analyzed its accuracy

and robustness as an edge detector with criteria equiva-

lent to Canny's [2] localization and SNR. In this article

we will make the link to region segmentation applica-

tions, since it is often desirable that region segmenta-

tion and edge �nding segmentation give similar results,

which is not trivial because they are di�erently formu-

lated. Since our decision criterion uses concepts from

both worlds, it will be a good candidate for consistent

edge �nding-segmentation. We will derive our criterion

from a correlation point of view, which will lead to fur-

ther interesting applications when speci�c shapes have

to be extracted. We will also comment on the crite-

rion's nonlinearity and its use in texture applications.

A single method capable of handling all the mentioned

problems is useful because real images contain a mix-

ture of all the cases, and a simple generic strategy is

also highly desirable in adaptive applications. We will

primarily focus upon the principles and will sometimes

drop illustrating results, because of the limited length

of the paper.

2. GENERAL DESCRIPTION OF THE

DISTINCTION EVIDENCE METHOD

To see if the image properties change, we will com-

pare a region with a nearby region. For the simplest
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feature extraction we will consider only the histogram

of the regions and not the geometrical position of the

particular pixel values. In the case of homogeneity,

the histograms in the two regions are similar to each

other. If there is a signi�cant property di�erence, this

will manifest itself in the di�erence of the histograms of

the two regions. In the case where spatial correlation

information is important, a simple preprocessing will

su�ce to incorporate the necessary information in the

histograms of the pretreated image regions.

The distinction evidence method typically runs as

follows:

1. Generate two sample sets in supposedly di�erent

regions. E.g. for a boundary polygonalization

we postulate (predict) the existence of a linear

edge segment, called separator Ŝ (shown dashed

in Figure 1), characterized by a starting point

(x0; y0), an associated angle � and length l. Around

this separator we construct 2 rectangular sam-

pling regions with width w (Figure 2).

Figure 1: Evaluation of goodness of �t of separator Ŝ

to a local boundary

2. Calculate the decision or gain value associated

with this separator Ŝ by means of formula (1).
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The decision value or gain G is the sum (over all

"color" values i 2 N(T ) ) of the absolute values

of the di�erences between the number of pixels

with color i in R1 (namely C
R1(Ŝ)

i ) and in R2

(namely C
R2(Ŝ)

i ). The i's are appropriately cho-

sen by de�ning a set of input thresholds T de-

pending on the application, from which we can

calculate the class i of a gray value g by means of

Tj � g < Tj+1 ) i(g) = i. In adaptive applica-

tions these thresholds could be calculated during

runtime, but we don't consider such applications

in this paper. We use the name color for any nu-

merical value: e.g. the image may contain the re-

sult of some texture feature preprocessing, upon

which we calculate the gain function. The as-

sumed "objects" (or segments) on either side are

hence characterized by means of their histogram,

and the di�erence of these histograms (1 minus

histogram overlap) is calculated as a measure of

the di�erence of the object regions R1 and R2

(Figure 2), rather than just the di�erence be-

tween weighted average gray levels, as in most

classical edge detection techniques.

Figure 2: Statistical interpretation of the decision cri-

terion G.

The histogram overlap can be intrinsic due to the

particular object boundary and noise, or because

of a mislocalization of our predicted separator Ŝ.

We have used formula (1) in an edge validator,

which yields a 1 or 0 for the existence of the edge

under the associated postulates (Ŝ; w). In prac-

tice depending on the gain outcome, which will

be somewhere between 0 and 1, we will make the

interpretations f clear detection, clear evidence,

doubtful evidence, clearly no feature g, with out-

put thresholds (not to be confused with the input

thresholds) that we choose corresponding to the

particular application.

3. Generate a new prediction in such a way that in

the end we will have found all the edges. We can

use a classical scan or a more advanced search

strategy.

3. DEVELOPMENT OF THE GAIN

FUNCTION FROM A CORRELATION

POINT OF VIEW

Binary matching, or in other words verifying whether

two binary patterns are the same, is a simple problem,

for which the normalized match index [4] was devel-

oped as a powerful tool. If we only reward the matches

and do not punish the mismatches (formula (2)), the

result can vary between 0 and 1, and if we match pix-

els whatever their position (i.e. N
fit just counts the

number of paired say black pixels on either side), we

can use formula (2) for the edge detection strategy ex-

plained in paragraph 2 in case we only work on binary

images.

C =
N

fit

Nfit +Nnonfit
; G = 1� C (2)

The analog concept for gray value images is the cor-

relation. If for a certain pixel more bitplane values

match, the partial pixel correlation value will relatively

be higher. However the sensitivity of the correlation

value to image pixel value changes, as compared to the

correlation template values, is low when the pixel val-

ues are high, and vice versa. We would like another

extension to gray value images, which keeps the idea of

binary acceptance/rejection counting. The basic idea

is to map the gray value image to a binary image,

by labeling the pixels as [Non Changed, Changed] in

the edge detection paradigm and [LeftObject, RightO-

bject] in the segmentation paradigm. We therefore in-

troduce the concept of majority colors as colors that

characterize better a certain object since there are more

pixels with this color in the object region (e.g. left rect-

angle) than in the other region. We can then in each

sampling region identify three types of pixels: major-

ity matching (I), majority excess (II) and minority

matching pixels (III). We then de�ne the match as:

C =
N

I +N
III

N tot
=
N

tot �N
II

N tot
(= 1�

excess

N tot
)

and the di�erence (gain) as:

G =
excess

N tot
=

P
i2N

�
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R
i

�
�

N tot
(3)

where the Ni in formula (3) are the Ci of formula

(1) .



4. NONLINEARITY

Even for the simplest application, which just takes the

di�erence of the histograms in a binary image, the ab-

solute values make the criterion(1) nonlinear. Since the

criterion(1) is blind to the exact numerical "color" val-

ues, we investigate the appearance of the nonlinearity

when we add measurements on di�erent parts of the

image together.

Figure 3: Composition of a larger sampling set from

two smaller ones.

Suppose that a larger sampling window consists of

the windows 1 and 2 on top of each other as depicted

in Figure 3, with respective areas A1 and A2. In the

left half of window 1 there are N black pixels and in

the right n, etc. We calculate the partial gains G1

in the upper and G2 in the lower pair of rectangles.

When the majority of black pixels is not in the same

half of windows 1 and 2, the linear formula (4) yields

a di�erent result than formula (1) due to the absolute

di�erence in formula (1).

G =
(N +M � n�m)

A1 +A2

=
(N � n) + (M �m)

A1 +A2

=
A1G1 +A2G2

A1 +A2

(4)

Of course when several "colors" are sampled, lin-

earity will almost certainly be violated.

The nonlinearity has some interesting aspects. Our

basic conjecture is that to model images, which are

formed by highly nonlinear processes, we need a non-

linearity in the �rst level detection algorithm. Nonlin-

earity is necessary to clearly separate the objects from

the background. An edge validator can only be robust,

i.e. give a correct edge validation irrespective of the

particular edge details in the image, if it is nonlinear.

The above described nonlinearity means that the

detector validates naturally the edges on all scales in

scale space (where w and also l determine the scale),

always yielding perfect localization for clear edges, i.e.

edges that are not curved. Our criterion forms a good

basis for a general edge de�nition, which is considered

to be a fundamental problem in image processing, since

the lower values of the gain can be mathematically ex-

pressed in terms of histogram overlap, edge jaggedness

and also parameter misestimation. The price to pay

for the nonlinearity is that our experiments to develop

a Hough transform-like evidence collection scheme, to

estimate bigger line segment parameters from measure-

ments on many small segments along the bigger line,

didn't give very satisfactory results on small scales.

The fact that the gain is normalized means that we

can suppress the less relevant, noisy local maxima. A

normalized measure is perfect for the parameter esti-

mation in modeling, since we know we have to converge

to a de�nable high G value of nearly 1. Having a nor-

malized value means that we do not necessarily need

to look for local maxima (of G(x0; y0; �; l)), but we can

make statements on the basis of a single evaluation.

This opens the door to more advanced 
exible edge

�nding strategies, like random or object driven image

search or connectionist systems. E.g. the normaliza-

tion can be used to tackle the multiple optima problem

when using a genetic algorithm search strategy.

Another useful property is the non zero contribu-

tion of the noise, which of course always contains some

edginess. This led us to a principle where we add noise

with predetermined properties for an optimal detec-

tion in vaguely situated regions of the image where we

suspect certain boundaries to be present, to enhance

the detection of the boundaries as in stochastic reso-

nance [3]. Suppose that in a medical application we

know more or less where the wall of say a heart should

be, but that it is not imaged clearly. We might then add

some noisy pixels in that region to force it to become

visible. Since it is not an easy thing to do we don't

know whether this concept will evolve from principle

to practice.

5. USE AS AN IMAGE SEGMENTATION

TOOL

In our framework the distinction between the edge �nd-

ing and segmentation approach is very subtle, since in

both cases we calculate edges. The �rst di�erence lies

in the way we manipulate the bins that collect the his-

togram counts (Figure 2). For segmentation we will

specify meaningful input thresholds, so that all gray

values between two such thresholds belong to the same

class i, whereas for edge detection we will blindly spec-

ify a number of equidistant threshold values. The sec-

ond di�erence lies in the generation of the global seg-

ments.

In a noisy image there will be many di�erent color

values, so small sampling regions in a homogeneous re-

gion have a considerable probability of generating large

gain values. One solution is to enlarge the sampling re-

gions, another is to reduce the number of colors/bins.

This can be done globally by quantizing more coarsely.



We will retain the larger amplitude edges and destroy

the smaller ones. Another possibility is to reduce the

number of colors locally, retaining in each two region

sample set e.g. 4 values. In a homogeneous region we

will then �nd more or less equal numbers of all col-

ors in both regions, whereas near an edge the colors

should be more organized geometrically. Although we

call the equidistant thresholds approach the edge �nd-

ing approach, it can also lead to a segmented image of

course. The more meaningful thresholds for the seg-

mentation approach can be obtained as follows. In a

stamp detection application e.g., we can investigate the

distribution of the colors of the white border of stamps

for a number of typical stamps and select based upon

this data a number of thresholds pinpointing this bor-

der histogram. In the example of Figure 5, we con-

trasted the typical dark pupil pixels with the lighter

eye white "background" pixels, by putting them in dif-

ferent histogram bins.

The distinction evidence method can detect at least

three types of edge important to (human) vision:

1 Large intensity changes can be quickly found in

a coarse quantization.

2 Very small di�erences in a geometrically precise

sampling setup can be detected (e.g. a dark truck

against the black background at night).

3 Signi�cant values, e.g. outliers, specular re
ec-

tions, can be detected by putting a threshold just

around their extremal values.

Even large amounts of interference typically occur-

ring in real life image processing applications, like e.g.

raindrops on the camera, need not be disturbing in a

good experimental setup. We can neglect these colors

and accept as clear edge evidence the lower gain values

resulting from the fewer true object pixels between the

raindrop pixels. Figure 4 shows the result of a segmen-

tation setup, where we used three equidistant global

thresholds, quantizing the peppers image to three col-

ors.

6. ROBUST CORRELATION

If we also take the sampling region shapes into ac-

count, matching them with the desired object struc-

tures, we get a robust correlation approach. In the ex-

ample of Figure 5 the sampling regions were created in

a pupil/iris (R1) and eye white (R2) shape, and the in-

put thresholds were now chosen for optimal separation

of the eye object values to �nd the two eyes of Lena.

Remark that in this case the separator Ŝ is not a line

segment. In a more general case we would have to test

Figure 4: Example of a segmentation application on

the peppers image.

di�erent sizes, shapes and threshold combinations. But

we need only calculate e.g. a set of semicircular mask

shapes with di�erent radii, while always evaluating the

same gain function on the obtained sample sets. As we

can see in Figure 5 both eyes, and only the eyes, give

a clear detection maximum.

Figure 5: Output of eye detection and geometric shape

of sampling regions (inlay).

7. TEXTURE DISCRIMINATION

The distinction evidence method can be used as an al-

ternative texture segmentation method directly on the



image or as a post processing step on images precon-

ditioned by other texture techniques. Remember that

after preprocessing the resulting image might still be

too complex a gray value image to be analyzed by a

simple technique like e.g. thresholding. In the direct

applications two groups of methods can be used. The

�rst just uses the rectangular setup of Figure 1, where

the length and width of the sampling rectangles can fur-

ther be chosen according to the texel scale. The gain

function can then detect changes e.g. in variance, skew-

ness... or more complex histogram properties. If neces-

sary special combinations of the bin values can also be

calculated. The second method applies sampling masks

optimized to match the texel shapes. We show a few ex-

amples of the rectangular sampling method (Figure 6),

showing that the maximum gain clearly corresponds to

the correct texture boundary. We have done experi-

ments on 88 texture squares, with all kinds of texture,

compared under exactly the same non optimized con-

ditions, resulting in 79.5% of the edges being detected,

86.5% of which were correctly localized.

Figure 6: Detection of the boundary between two tex-

tures .

8. CONCLUSION

We have developed a new distribution free edge deci-

sion criterion, that bridges the gap between edge �nd-

ing and segmentation. It can be used as a robust and

versatile feature extraction tool, which seems di�cult

to achieve when using exact functional forms depend-

ing on the numerical values of the pixels. Although in

many cases the simple postulates like e.g. white Gaus-

sian noise are maintainable, and averaging strategies

are hard to beat, we looked for a criterion that is not

hampered too much by violations of these postulates.

In particular, the exact noise distribution as well as

its autocorrelation do not matter, leading to almost no

edge interference (see e.g. the texture experiments).

On the other hand we can measure a lot of edge types,

characterized by other parameter changes than the av-

erage gray value, and having more information in the

histogram makes our method more robust and versatile

than methods which are based purely on the average,

which is not a particularly useful descriptor for com-

plex distributions. Geometrically the strategy is very

simple due to the fact that it samples the pixels on

equal basis, as we could see from the ease with which a

particular sampling shape is chosen (e.g. the toothed

boundary pattern of a stamp). The reader should com-

pare our gain function with the complicated detection

formula based on the Canny strategy used by Oakley

and Shann [5], just for the extraction of arc segments.

For binary images (or well separated histograms) the

criterion is analogous to the Prewitt edge �nder, from

which one can theoretically develop the other �lters like

Canny's and Shen/Castan's [6].

We think that the idea can shed more light on sev-

eral theoretical aspects of image processing. Moreover

we expect that due to its versatility, the method can

be optimized to tackle many applications, and we es-

pecially suspect it to be useful in adaptive strategies.

Since the criterion is computationally simple, fast hard-

ware could be developed.
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