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ABSTRACT

Adaptive multichannel L-filters based on marginal ordering
are studied in this paper when structural constraints such
as the location-invariance or the unbiasedness are imposed
on the filter coefficients. Two novel adaptive algorithms are
derived by using Frost’s algorithm for minimizing the Mean
Squared Error subject to the above-mentioned constraints
in the LMS and in the LMS-Newton algorithms. It is de-
mostrated by experiments that the Frost-LMS algorithm
has a faster convergence rate than the Frost LMS-Newton
algorithm but it yields a higher steady-state MSE than that.

1. INTRODUCTION

Adaptive signal processing has been an active research area
for more than two decades. Adaptive filters have been ap-
plied in a wide variety of problems including system identifi-
cation, channel equalization, echo cancellation in telephone
channels [1]. All the above-mentioned problems involve one-
dimensional (1-D) signals and 1-D linear filters. However,
many digital signal processing problems cannot be solved
by using linear techniques. Such problems are related to
nonlinearities due to noise and/or signal statistics, to sys-
tem nonlinearities in digital signal acquisition etc. In this
case, a multitude of nonlinear techniques has been proved
a successful alternative to the linear ones [2].
One of the best known nonlinear filter classes is based

on the order statistics. It uses the concept of data order-
ing. There is now a plethora of nonlinear filters based on
data ordering. Among them are the L-filters whose output
is defined as a linear combination of the order statistics [3].
Recently, increasing attention has been given to nonlinear
processing of vector-valued signals [4, 5, 6, 7, 8]. The major
difficulty in the definition of multichannel order statistics fil-
ters is the lack of an unambiguous and universally accepted
definition of ordering for multivariate data [9]. Filters such
as those proposed in [6, 7] are based on marginal ordering
whereas other filters are based on reduced ordering [4, 5, 8].
The main contribution of this paper is in the design

of adaptive multichannel L-filters based on marginal data
when structural constraints are imposed on the filter coeffi-
cients. In other words, the fidelity criterion to be minimized

is the Mean Squared Error (MSE) between the filter output
and the desired response subject to a set of constraints on
the filter coefficients known as structural constraints. Two
such constraints are the location invariance and the unbi-
asedness. Two novel adaptive algorithms are derived by
using the algorithm of Frost [10] for minimizing the MSE
subject to the above-mentioned constraints in the LMS and
in the LMS-Newton algorithms. By examining the learning
curves, it is found that the Frost-LMS algorithm exhibits
a faster convergence rate than the Frost LMS-Newton al-
gorithm but to a higher steady-state MSE. The work pre-
sented in this paper extends previously reported work [7].
The outline of the paper is as follows. Section 2 de-

scribes the problem treated and our motivation for devel-
oping constrained adaptive multichannel L-filters. The up-
dating equations for the filter coefficients are derived in
Section 3. Finally, experimental results are included in Sec-
tion 4.

2. PROBLEM STATEMENT

The output of a p-channel L-filter of length N operating
on a sequence of p-dimensional vectors {x(k)} for N odd is
given by [7]:

y(k)
4
= T[x(k)] =

p∑
i=1

Aix̃i(k) (1)

where Ai is a (p × N) coefficient matrix. Let a
T
il , l =

1, . . . , p denote the l-th row of matrix Ai and x̃i(k) =(
xi(1)(k), . . . , xi(N)(k)

)T
, i = 1, . . . , p be the (N × 1) vec-

tor of the order statistics along the i-th channel. Let also

a(i) =
(
aT1i | a

T
2i | · · · | a

T
pi

)T
. Moreover, we define the com-

posite vector X̃(k) = (x̃T1 (k) | x̃
T
2 (k) | . . . | x̃

T
p (k))

T .
Frequently, structural constraints are imposed on the

filter coefficients. Two such constraints are the location in-
variance and the unbiasedness. In the single-channel case,
location invariance implies that the sum of filter coeffi-
cients must be equal to one. Such a constraint is imposed
both to single-channel linear adaptive filters (e.g. the two-
dimensional Least Mean Squares (TDLMS) adaptive filters
[11]) and to single-channel nonlinear adaptive filters (e.g.



the location-invariant LMS L-filter [12]). In the multichan-
nel case, the optimal nonadaptive location-invariant L-filter
has been derived in [7]. Let us recall the definition of the
location-invariant multichannel L-filter first. A multichan-
nel marginal L-filter is said to be location-invariant [7] if
its output is able to track small perturbations of its input.
That is, if x′(k) = x(k) + b then:

y′(k) = T[x′(k)] = y(k) + b (2)

where y(k) = T[x(k)]. The definition of a location-invariant
multichannel L-filter yields the following set of constraints
imposed on the filter coefficients:

GT a(i) = bi i = 1, . . . , p (3)

where GT is a (p× pN) matrix having the structure:

GT =

 1
T 0T · · · 0T

...
. . .

...
0T 0T · · · 1T

 (4)

with 0 being a (N × 1) vector of zeroes. In (3), bi is the
i-th basis vector in Rp, i.e., a vector whose elements are
zero except the i-th element which equals 1. Another con-
straint used in practice is the unbiasedness. A multichannel
marginal L-filter is said to be an unbiased estimator of lo-
cation if E[y(k)] = E[s(k)], i.e.,

aT(i) E[X̃(k)] = E[si(k)]. (5)

Let us suppose that the observed p-dimensional sig-
nal {x(k)} can be expressed as a sum of a p-dimensional
noise-free signal {s(k)} and a noise vector sequence {n(k)}
of zero mean vector having the same dimensionality, i.e.,
x(k) = s(k) + n(k). The noise vector components are as-
sumed to be uncorrelated in the general case. In addition,
we assume that the noise vectors at different values of index
k are independent identically distributed (i.i.d.) and that
at each value of index k the signal vector s(k) and the noise
vector n(k) are uncorrelated. We want to find the multi-
channel L-filter coefficient matrices Ai, i = 1, . . . , p which
minimize the MSE between the filter output y(k) and the
noise-free signal s(k) subject to the constraints (3) or (5).
Following similar reasoning as in [7], but without invoking
the assumption of a constant signal s, it can be shown that
the MSE is expressed as:

ε(k) =

p∑
i=1

{aT(i)R̃pa(i) − 2a
T
(i)q̃(i)}+ E

[
sT (k)s(k)

]
(6)

where R̃p = E
[
X̃(k)X̃T (k)

]
and q̃(i) = E

[
si(k)X̃

T (k)
]
. It

can easily be seen that R̃p is a composite matrix that con-
sists of the correlation matrices of the ordered input samples
from the same channel (e.g. Rii = E[x̃i(k)x̃

T
i (k)]) as well as

from different channels (e.g. Rij = E[x̃i(k)x̃
T
j (k)], i 6= j):

R̃p =

 R11 R12 · · · R1p
...

. . .
...

RT1p RT2p · · · Rpp

 . (7)

We can always solve the two constrained minimization prob-
lems outlined above provided that we are able to calculate
the moments of the order statistics from univariate popula-
tions that appear in Rii as well as the product moments of
the order statistics from bivariate populations that appear
in Rij , i 6= j and i = 1, . . . , p. This is fairly easy for i.i.d.
input variates, i.e., in the case of a constant signal s(k) = s,
as has been demonstrated in [7]. Even for independent, non-
identically distributed input variates the framework tends
to become very complicated (cf. [7]). The difficulties are

increased when the observations X̃(k) and the desired sig-
nal s(k) are strongly nonstationary. In order to overcome
this obstacle, we shall resort on iterative algorithms for the
minimization of ε(k) in (6) subject to constraints (3) or (5).

3. CONSTRAINED MINIMIZATION OF THE
MEAN SQUARED ERROR

In this section, the location-invariant and the unbiased adap-
tive multichannel L-filter based on marginal ordering are
derived. For each constrained adaptive multichannel L-
filter Frost’s approach [10] is used to minimize iteratively
the MSE subject to constraints in the framework either of
the LMS algorithm or of the LMSN algorithm.

3.1. Location-invariant adaptive multichannel L -
filter

Let us treat the minimization of the MSE (6) subject to (3).
The problem under study is formulated as the minimization
of the following Lagrangian function:

H(a) =
1

2
ε(k) +ΛT

 G
Ta(1) − b1
...

GTa(p) − bp

 (8)

where ε(k) is given by (6) and Λ =
(
λT1 | · · · | λ

T
p

)T
is a

(p2×1) vector. By differentiating H(a) with respect to a(i)
and by demanding a(i)(k+1), i = 1, . . . , p to satisfy the set
of constraints (3) we get:

a(i)(k + 1) = P
{
a(i)(k) + µ

[
q̃(i) − R̃pa(i)(k)

]}
+ fi. (9)

P is the projection matrix of dimensions (pN×pN) defined
by:

P =
[
I−G(GTG)−1GT

]
=
[
I−

1

N
GGT

]
(10)

and fi is a (pN × 1) vector given by:

fi = G(G
TG)−1bi =

1

N
Gbi i = 1, . . . , p. (11)

By using instantaneous estimates for R̃p and q̃(i), the LMS
location-invariant multichannel L-filter is obtained:

â(i)(k + 1) = P
(
â(i)(k) + µei(k)X̃(k)

)
+ fi i = 1, . . . , p.

(12)
It is evident that by replacing ei(k) by −yi(k) the same
filter structure can be used for the minimization of the total
output power subject to constraints (3). Such an approach



can be used when a reference signal is not available. The
recursion (12) is initialized by:

a(i)(0) = fi i = 1, . . . , p. (13)

The vast majority of constrained adaptive algorithms
relies on the LMS algorithm. To the authors’ knowledge no
attempt has been made to design constrained adaptive fil-
ters based on other adaptive algorithms, such as the Recur-
sive Least Squares (RLS) or the LMS Newton (LMSN) algo-
rithm. The case is much simpler for the LMSN [13] than for
the RLS algorithm, because LMSN shares the same frame-
work with LMS. It is well known that LMSN minimizes the
cost function (8) as well. It can be shown that the optimal
solution to the minimization of the cost function (8) is given
by:

a∗(i)(k) = a(i)(k)− R̃
−1
p

∂H(a(k))

∂a(i)(k)
. (14)

The steepest descent solution is obtained from (14) by adding
an additional step-size parameter µ:

a(i)(k + 1) = a(i)(k)− µR̃
−1
p

∂H(a(k))

∂a(i)(k)
. (15)

By substituting R̃−1p with the estimate

R̂−1p (k) =
1

1− ζ

{
R̂−1p (k − 1)−

−
R̂−1p (k − 1)X̃(k)X̃

T (k)R̂−1p (k − 1)(
1−ζ
ζ

)
X̃T (k)R̂−1p (k − 1)X̃(k)

}
(16)

and by using instantaneous estimates for the expected val-
ues involved in the gradient of H(a(k)) with respect to
a(i)(k), the following recursions result:

â(i)(k + 1) =
{
I− R̂−1p (k)G

[
GT R̂−1p (k)G

]−1
GT
}

·
[
â(i)(k) + µR̂

−1
p (k)ei(k)X̃(k)

]
+ R̂−1p (k)G

[
GT R̂−1p (k)G

]−1
bi. (17)

The comparison between (17) and (11) reveals that the
structure of the LMSN location-invariant multichannel L-
filter is the same with that of the LMS location-invariant
one but with a time-varying matrix P and a time-varying
vector fi. The new matrix P

′(k) and vector f ′i(k), i =
1, . . . , p are now given by:

P′(k) = I− R̂−1p (k)G
[
GT R̂−1p (k)G

]−1
GT (18)

f ′i(k) = R̂−1p (k)G
[
GT R̂−1p (k)G

]−1
bi (19)

The updating equations (17) are also initialized by (13).

3.2. Unbiased adaptive multichannel L -filter

Let m̃p = E[X̃(k)] and si = E[si(k)]. Eq. (5) can be rewrit-
ten as:

aT(i) m̃p = si. (20)

We shall assume that m̃p has already been estimated and it
is known. For example, one may use the following recursion:

m̂p(k) = m̂p(k − 1) +
1

k

(
X̃(k)− m̂p(k − 1)

)
(21)

with m̂p(0) = 0. The minimization of the MSE (6) subject
to (20) is formulated as the minimization of the following
Lagrangian function:

H(a) =
1

2
ε(k) +

p∑
i=1

λi
(
aT(i)m̃p − si

)
. (22)

By differentiatingH(a) with respect to a(i) and by demand-
ing a(i)(k+1) to satisfy the set of constraints (20) we obtain:

a(i)(k + 1) = a(i)(k)− µ

(
I−
m̃pm̃

T
p

m̃Tp m̃p

)(
R̃pa(i)(k)−

− q(i)
)
+

(
si − m̃

T
p a(i)(k)

)
m̃Tp m̃p

m̃p. (23)

By rearranging the terms in (23) we get:

a(i)(k + 1) = P
′′ {(
a(i)(k) + µ(q(i) − R̃pa(i)(k)

)}
+ f

′′

i i = 1, . . . , p (24)

with

P
′′

=

(
I−
m̃pm̃

T
p

m̃Tp m̃p

)
(25)

f
′′

i =
si

m̃Tp m̃p
m̃p. (26)

The algorithm is initialized by:

a(i)(0) = f
′′

i . (27)

If instantaneous estimates for R̃p and q(i) are used, we
obtain the LMS unbiased multichannel L-filter:

â(i)(k + 1) = P
′′

(k)
{
â(i)(k) + µei(k)X̃(k)

}
+ f

′′

i (k) i = 1, . . . , p (28)

Let us also consider the minimization of the MSE (6)
subject to (20) within the framework of LMS-Newton algo-
rithm. Following similar reasoning it can easily be proved
that:

â(i)(k + 1) = P̂
′′′

(k)
{
â(i)(k) + µR̂

−1
p (k)ei(k)X̃(k)

}
+ f̂

′′′

i (k) i = 1, . . . , p (29)

with

P̂
′′′

(k) =

(
I−
R̂−1p (k)m̃p(k)m̃

T
p (k)

m̃Tp (k)R̂
−1
p (k)m̃p(k)

)
(30)

f̂
′′′

i (k) =
siR̂

−1
p (k)m̃p(k)

m̃Tp (k)R̂
−1
p (k)m̃p(k)

. (31)

The updating equations (29) can be initialized by:

a(i)(0) = f
′′

i (32)

as well. Eqs. (29)–(32) define the LMSN unbiased multi-
channel L-filter.



4. EXPERIMENTAL RESULTS

A set of experiments is presented in order to assess the
performance of the location-invariant adaptive multichan-
nel L-filters that we have discussed so far.
A two-channel 1-D signal s(k) = s corrupted by addi-

tive white bivariate contaminated Gaussian noise is treated,
because for such a signal, the optimal multichannel L-filter
coefficients have been derived in [7]. LetN (ξ1, ξ2 ;σ1, σ2 ; r)
denote a joint bivariate Gaussian distribution where the pa-
rameter ξi and σi, i = 1, 2 is the expected value and the
standard deviation of each component respectively and r
is the correlation coefficient. A vector valued signal s =
(1.0, 2.0)T corrupted by additive white bivariate noise n(k)
with probability density function (pdf) given by:

(1− %)N (0, 0 ; 1, 3 ; 0.5) + %N (0, 0 ; 3, 9 ; 0.7)

for % = 0.1 has been used as a test signal as in [7]. The noise
reduction index (NR) defined as the ratio of the output
noise power to the input noise power, i.e.:

NR = 10 log

∑
k
(y(k)− s(k))T (y(k)− s(k))∑
k
(x(k)− s(k))T (x(k)− s(k))

. (33)

is measured and is compared to the one achieved by the
nonadaptive location-invariant multichannel L-filter.
An approximation of the ensemble-averaged learning

curve for the location-invariant multichannel L-filters un-
der study has been obtained following the procedure de-
scribed in [1]. That is, a sequence of 10000 samples of
{x(k)} has been created and the squared norm of the esti-
mation error ‖e(k)‖2 = ‖s(k)−y(k)‖2 has been computed.
The experiment has been repeated 200 times, each time us-
ing an independent realization of the process {n(k)}. The
averaged squared norm of the estimation error is then de-
termined by computing the ensemble average of ‖e(k)‖2

over the 200 independent trials of the experiment. The
learning curves of the LMS and LMSN location-invariant
multichannel L-filters are given in Figure 1a and 1b, re-
spectively. The filter length N has been 9 in all cases. The
recursions have been initialized by using (13). In the plots
of Figure 1 points every 50 time instants have been used.
In the location-invariant LMS multichannel L-filter, µ has
been equal to 5 × 10−5. For the location-invariant LMSN
multichannel L-filter, µ, ζ have been set to 0.001 and 0.001,
respectively. The recursion for the computation of the in-
verse matrix starts with R̂−1p (0) = δ

−1I with δ = 0.01.
It is seen that LMS exhibits a faster convergence rate but
to a higher steady state MSE, as is manifested in Table 1
where the NR achieved by both the adaptive algorithms
is tabulated. In the same table, the NR achieved by the
nonadaptive design [7] is included for comparison purposes.
The NR achieved by the marginal median is included for the
same purposes as well. The LMSN location-invariant mul-
tichannel L-filter outperforms the nonadaptive one by 1.4
dB. This is attributed to the arithmetic errors that occur in
the estimation of the moments of the marginal order statis-
tics (i.e., numerical integration or discretization) employed
in [7]. The very large eigenvalue spread that is inherent to
the correlation matrix of the order statistics magnifies these
errors. As a consequence, the filter coefficients are seriously
effected.
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Figure 1: Learning curves of the (a) LMS adaptive
location-invariant multichannel L-filter; (b) LMSN adap-
tive location-invariant multichannel L-filter.

The learning curves of the LMS and LMSN unbiased
multichannel L-filters have been computed as well. They
are shown in Figure 2a and 2b, respectively. A variable
step-size µ(k) = 0.1 × (X̃T X̃)−1 has been used. It is seen
that LMS converges faster than LMSN algorithm but to a
higher steady-state MSE in this case, too. Table 2 summa-
rizes the NR achieved by both the adaptive algorithms. For
comparison purposes the NR achieved by the nonadaptive
unbiased multichannel L-filter is also tabulated.
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Figure 2: Learning curves of the (a) LMS adaptive unbiased
multichannel L-filter; (b) LMSN adaptive unbiased multi-
channel L-filter.
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