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ABSTRACT

In this paper, we present and discuss measurements
of Webcasting and aggregated Web tra�c in our research
group's local area network. The Webcasting tra�c is mul-
tiplexed to simulate the e�ect of having many clients run-
ning simultaneously webcasting software in the background.
The multiplexed Webcasting and the aggregated Web traf-
�c appear to be asymptotically self-similar. The �-stable
self-similar stochastic process, originally proposed in [5] to
model aggregated Ethernet LAN and WAN tra�c, is ap-
plied to the new measurements and the results, implications
and extensions are discussed.

1. INTRODUCTION

In the past three years, World Wide Web (WWW or simply
web) applications have become ubiquitous. As a result, net-
work tra�c related to web applications has increased con-
siderably to a conservative estimate of 30% of total network
tra�c. Therefore, accurate and robust models for this par-
ticular type of tra�c would be essential for resource alloca-
tion and evaluation of network performance, and for future
design of networks and protocols.

Among those applications of the web that are expected
to attract considerable interest in the next few years is we-
bcasting. Webcasting is the automatic transmission of web
content from the server to the client without any interven-
tion of the user. This type of tra�c is inherently di�erent
than tra�c created by the user \sur�ng" the net and down-
loading information by request. It is also expected to dom-
inate the tra�c, since it involves information broadcasting
to a large number of users and also because it becomes the
popular choice of people for frequently updated web con-
tent. Finally, webcasting will take advantage of the user's
idle time to download information relevant to the user's in-
terests, and therefore the related tra�c is expected to be
very bursty.

Recent network tra�c measurements over Local Area
Networks (LANs) [6], Wide Area Networks (WANs) [8],
and of source level Variable Bit Rate Video (VBR) tra�c
[2], have revolutionized the �eld by showing that the ac-
tual tra�c does not account for the simple widely accepted
models such as the Poisson or Modulated Markov processes.
There is also an indication that the tra�c generated by the
transmission of web content does not follow the traditional

models at the peak times of utilization by the users [3]. In
contrast, real network tra�c exhibits burstiness over a very
large range of time-scales and long-range dependence, which
can be accounted by using statistical self-similar distribu-
tions.

Since the two main aspects of high speed network traf-
�c are impulsiveness and self-similarity, there is a need for
models that can capture both of these properties in a uni-
�ed and parsimonious fashion. The problem is currently
addressed from two di�erent directions: The �rst one is the
use of heavy-tailed distributions (e.g. Pareto) to account
for the impulsiveness [6], and the second is the use of self-
similar processes (e.g. fractional Gaussian noise) to account
for the statistical self-similarity of the data [7]. While these
approaches give better results than the simple Poisson or
Compound Poisson models, they fail to unify the desired
model properties.

On the other hand, �-stable self-similar processes can
capture both the impulsiveness, since the underlying distri-
bution is heavy-tailed, and the self-similarity. Furthermore,
they provide a physical interpretation of how the observed
data appear as the superposition of independent e�ects ac-
cording to the Generalized Central Limit Theorem [4].

The rest of the paper can be summarized as follows:
In section 2.1 we present measurements of tra�c on the
client site, using the Pointcast Network [9], as the webcast-
ing source. Section 2.2 deals with the multiplexing of the
tra�c measured, to simulate the e�ect of having a number
of clients in the local network running webcasting software
in the background. In section 2.3, measurements of web
tra�c on our local network are provided and analyzed. The
�-stable self-similar stochastic process which was originally
proposed in [5] as a model for aggregated Ethernet LAN
and WAN tra�c, is presented in section 3. The methodol-
ogy to estimate the parameters of the suggested model along
with simulations are presented in section 4. By applying the
Rescaled Adjusted Range Statistic (or R/S) we show that
both the multiplexed webcasting and the aggregated web
tra�c are asymptotically self-similar. We provide results
from simulations, where we synthesize tra�c by using the
proposed model. We summarize the conclusions of the pa-
per and future research directions in section 5.



2. NETWORK TRAFFIC MEASUREMENTS

In the following three subsections, we provide measurements
taken in the Communications Group's LAN during non-
overlapping times of the day during a span of one week in
June 1997. The �rst two subsections describe measurements
and multiplexing of webcasting tra�c, while the next sub-
section presents measurements of web tra�c. Information
about the size, date and time that the data were captured,
is provided in tables 1 and 2.

2.1. Webcasting tra�c

To measure webcasting tra�c we used the following exper-
imental setup: A networked station (Windows95-PC) was
dedicated to run the Pointcast Network [9] on the back-
ground (we will refer to it as the client). Another station
(Solaris-SparcStation) was used to measure the tra�c ad-
dressed to the Pointcast client, coming from the www ap-
plication port. The last condition ensures that we measure
only the web tra�c addressed to the client. No web brows-
ing was allowed on the Pointcast client to isolate only the
webcasting tra�c.

The measurements consist of 10 binary �les, each one
containing information about 1000 Ethernet packets which
arrived at the client during di�erent times of the day. From
those �les, we extracted only the time-stamps and the lengths
of the Ethernet packets. From the time-stamps we con-
structed packet-count plots, which are depicted in �gure
1.

The installation of the Pointcast client was typical, with
the default number channels and subchannels. Figure 1 illus-
trates that the updates are periodic and occur approximately
every hour.

2.2. Generation of aggregate webcasting tra�c

In this work, we are interested in modeling the aggregate
webcasting tra�c. As mentioned above, measurements pre-
sented in �gure 1 correspond to tra�c addressed to a single
client. We are interested to observe how the network tra�c
patterns change as the number of stations receiving webcast-
ing content increases.

We assume that the server does not support any sort of
multicasting, and therefore that the information transmitted

FILENAME SIZE(pkts) DAY Tstart Tstop
cap-1.bin 1000 Jun 19 9:32P 3:03A
cap-2.bin 1000 Jun 19 12:42P 4:25P
cap-3.bin 1000 Jun 20 1:22P 6:28P
cap-4.bin 1000 Jun 20 4:25P 9:31P
cap-5.bin 1000 Jun 20 3:25P 8:30P
cap-6.bin 1000 Jun 23 9:55A 1:58P
cap-7.bin 1000 Jun 23 3:49A 8:55A
cap-8.bin 1000 Jun 23 6:52A 10:56A
cap-9.bin 1000 Jun 24 9:09A 12:28P
cap-10.bin 1000 Jun 24 7:19P 11:23P

Table 1: Information about the webcasting tra�c measure-
ments for one client.
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Figure 1: Webcasting measurements for one client over dif-
ferent times of the day. Tra�c is represented by packet-
counts. Each plot gives the packet-count of a record of
1000 Ethernet packets. Data were captured on the dates
and times shown in table 1.

FILENAME SIZE(pkts) DAY Tstart Tstop
cap-weball1.bin 100000 Jun 19 4:30P 11.18P
cap-weball2.bin 72088 Jun 20 9:00A 12:41P
cap-weball3.bin 100000 Jun 20 1:00P 6:00P
cap-weball4.bin 100000 Jun 23 9:00A 1:16P
cap-weball5.bin 31962 Jun 23 3:00P 4:45P
cap-weball6.bin 100000 Jun 24 11:00A 3:52P

Table 2: Information about the aggregated web tra�c mea-
surements.

from the server to the client is point-to-point. This assump-
tion agrees with the current implementation of most of the
webcasting software available. This is also supported by the
fact that the information distributed from the server to the
client could be entirely personalized.

To simulate the e�ect of having a varying number of
client stations in the local network requesting personalized
information in the background, we used the set of actual
measurements in the following way: for each station k =
1; 2; : : : ;N in the network we pick randomly, in a uniform
fashion, one of the actual measurements delayed by a ran-
dom amount of time to = Uniform[0; T ), where T is the
period of content updates for each client. The overall tra�c
is generated by multiplexing the N data records. Plots of
packet-counts generated using the above method are shown
in �gure 2 for di�erent numbers of client stations N =
100; 150 and 200.
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Figure 2: Aggregate webcasting tra�c generated by multi-
plexing randomly delayed actual measurements. The num-
ber of stations is 100 in (a), 150 in (b) and 200 in (c).

2.3. Web tra�c

A SparcStation was used to collect web tra�c measurements
over our research group's LAN. Web tra�c was isolated
from general Ethernet tra�c by restricting the captured
packets to have www destination or source port number.
Our local network consists of approximately 120 worksta-
tions and one web server. We captured six segments of
the tra�c over di�erent times of the day in a span of one
week, each consisting of information for 100,000 packets. As
in the case of webcasting measurements, we extracted the
time-stamps and the lengths of the Ethernet packets and
then calculated the corresponding packet-counts. Plots of
the packet-counts of the 6 records are shown in �gures 3
and 4.
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Figure 3: Part I web tra�c measurements over the Commu-
nications Group's LAN. Plots correspond to the �rst three
�les shown in table 2.

3. MODELING USING �-STABLE
SELF-SIMILAR PROCESSES

Our proposed model M , is de�ned as follows:

M(i) = c1 � L�;H (i) + c2; c1; c2 2 R
+
; i 2 Z

+
; (1)

where c1 and c2 are positive real constants and L�;H (i) is
Linear Fractional Stable Noise (LFSN) [10], with � = 1; � =
1, � = 0 and H > 1=� to ensure long-range dependence.
This model was �rst proposed in [5] to capture the statistical
behavior of aggregate WAN Ethernet tra�c measured at
Bellcore [6].

Since � = 1, the LFSN process is totally skewed. This
does not imply that the density function has support only on
the positive X axis for all �'s. It is strictly positive only for
� < 1, but this condition is very restrictive for our modeling
since we impose the inequality � > 1=H, where 0 < H < 1.
Also the condition that � is greater than 1, ensures that
the mean of the LFSN exists, according to the properties of
�-stable distributions.
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Figure 4: Part II web tra�c measurements over the Commu-
nications Group's LAN. Plots correspond to the last three
�les shown in table 2.

The expected value of the model is

E[M ] = c1 � E[L�;H ] + c2 = c2; (2)

since E[L�;H ] = const � � = 0 [5].

4. MODEL PARAMETER ESTIMATION AND

SIMULATIONS

The proposed stochastic model in equation 1 depends only
on a set of four parameters: (�;H;c1; c2). Our goal is to
investigate whether this parsimonious model, can be accu-
rately �tted to webcasting and web tra�c as it was done to
aggregate Ethernet tra�c in [5].

The �rst step in the modeling is to estimate the self-
similarity parameter H, which indicates whether the time-
series representing the packet-count is asymptotically self-
similar or not, and what is the degree of self-similarity. To
estimate H we use the R/S statistic. The results are summa-
rized in table 3 where we see that all of the webcasting and
web data records exhibit self-similarity in various degrees.

Webcast records Estimated H

100 stations 0.69
150 stations 0.66
200 stations 0.71
Web records

1 0.59
2 0.85
3 0.82
4 0.75
5 0.62
6 0.79

Table 3: Estimated self-similarity parameter H for aggre-
gated webcasting and web tra�c records. The aggregated
webcasting records were constructed with the method de-
scribed in section 2.2 and the web records are constructed
from the �les given in table 2.
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Figure 5: Tra�c generated by the model extracted from the
multiplexed webcasting tra�c with 200 stations shown in
�gure 2(c).

Parameter c2 is estimated simply by the mean of the
packet-count process as equation 2 suggests. The other pa-
rameters � and c1 can be estimated by minimizing the mean
absolute error between the model and the real data:

min
1=H<��2;c1>0

EjX� c1 �La;H � c2j; (3)

where X is the vector of the real data corresponding to the
packet-count. The existence of the mean absolute error is
guaranteed since � > 1 for the permissible range of H, as
mentioned above.

We conducted simulations following the above param-
eter estimation method, and the results are shown in �g-
ures 5 and 6. Figure 5 presents synthesized tra�c based on
the model extracted from the multiplexed webcasting tra�c
with 200 stations, shown in �gure 2(c), while �gure 6 depicts
tra�c generated by the model extracted from the real web
tra�c record which is shown in �gure 3(c). In the �rst case,
the parameter set is (� = 1:95; H = 0:71; c1 = 250; c2 = 77),
while in the second case, it is (� = 1:7;H = 0:85; c1 =
100; c2 = 55). In both cases the tail parameter � is smaller
than 2, which justi�es the choice of an underlying heavy-
tailed distribution in the model. Both synthesized records
look statistically very similar to the original time-series.
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Figure 6: Tra�c generated by the model extracted from the
aggregated web tra�c shown in �gure 3(c).

5. CONCLUSION

We showed that multiplexed webcasting tra�c and aggre-
gate web tra�c exhibit self-similarity asymptotically. Since
web tra�c already comprises a large portion of today's over-
all network tra�c, and webcasting is expected to be the next
resource-hungry application, network engineering will need
statistically accurate, robust and parsimonious models to
characterize them. We presented an �-stable self-similar
stochastic process that was used as a model with the de-
sirable properties. We are currently working on the inves-
tigation of more e�cient and reliable algorithms for model
parameter estimation and on the evaluation of our proposed
model for characterization of network performance.
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