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ABSTRACT

A new method of controlling the trade-off between noise
attenuation and detail preservation in nonlinear filter design
is presented. Thetechniqueis based on an appropriate com-
bination of the sample selection probabilities of afilter with
traditional error criteria. The practical applicability of the
approachisempirically studied in connectionwith the train-
ing-based optimization of soft morphological filters. Also,
the formulasfor the sample selection probabilities of the ba-
sic soft morphological filters are derived.

1. INTRODUCTION

The trade-off between detail preservation and noise attenu-
ation is one of the key issuesin nonlinear filter design. The
more emphasisis laid on the preservation of the details, the
more noise tends to stay after filtering. In [1] and [3] the
trade-off was controlled using the concepts of the breakdown
probability and the breakdown point of thefilter. There, the
aim was not to forcethefiltersto maximal noiseremoval but
rather to preserve detail swhile adesired amount of the noise
wasto be removed. This paper addressesfilter design prob-
lemswhere the aim is the converse, noise attenuation under
the requirement that a predetermined level of detailsis pre-
served. The detail preservation leve is controlled by using
the concept of the sample selection probability. As the ex-
perimental case we have used soft morphological filters.

2. SOFT MORPHOLOGICAL FILTERS

Soft morphological filters are stack filters with many desir-
ableproperties, e.g., they can be designed to preservedetails
well [4, 5]. Thetwo basic soft morphological operationsare
soft erosion and soft dilation. Based onthese operations, two
compound operations, soft opening and soft closing, can be
defined in the usual way.

Definition 1 The structuring system [B, A, r] consists of
three parameters, finite sets A and B,A C B # 0,inZ™
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(Where m € Z. denotes the dimensionality of the signal
space), and aninteger r setisfying1 < r < max{1, |B\ A|}.
The set B is called the structuring set, A its (hard) center,
B\ A its(soft) boundary, and r the order index of its center
or the repetition parameter.

Thetranslated set T, isdefinedby T, = {z +t : t €
T}. A multiset is a collection of objects, where the repeti-
tion of objectsis allowed. For example, {1,1,1,2,3,3} =
{3¢1,2,2¢3} isamultiset. Soft morphological operations
transform a signal S(-) to another signal by the following
rules.

Definition 2 Soft erosion (soft dilation) of S(-) by the
structuring system|[B, A, r] isdenotedby SS[B, A, r] (S
[B, A,r]), whereS © [B, A, r](z) (S@ [B, A, r](x)) isthe
rth smallest (largest) value of the multiset {r{S(a) : a €
Az} U{S(b) : b e (B\ A).}.

Although there are no analytical criteria for deciding
which soft operation (and with which parameters) isthe best
for some situation, a suitable operation and its parameters
can be found using supervised learning methods, e.g., Ssimu-
lated annealing and genetic algorithms[2]. Of course, some
training set, for which the desired output isknown, isneeded.

3. SAMPLE SELECTION PROBABILITIES

Let (X1, Xs,...,Xy) denote a real-valued sample vector
in the input window of a soft morphological filter. The defi-
nition of the soft morphological filtersimpliesthat the output
is one of the input window samples. Thus, it is quite natural
to ask what is the probability for the jth sample of the win-
dow to bethe output. More exactly, the jth sample selection
probability, 1 < j < N,isdenotedby P[Y = X;]andis
defined as the probability that the output Y = X; [6].

In the case of an i.i.d. input signal it is quite smple to
derive exact formulas for the calculation of the jth sample
selection probability of the soft morphological erosion and
dilation. To simplify the notations the following definition
isgiven.



Definition 3 Let F' bea soft erosion or soft dilationwith the
structuring system[B, A, r]. Thenthei.i.d. ssmpleselection
probability of theset D C B isdenoted by o(F; D) and is
defined by

¢(F; D) = P[F(z) € {f(d) : d € D.}],

where f: Z™ — R issomei.i.d. signal and z isany pointin
7.

If D hasexactly one element Definition 3 reducesto that
of the sample selection probability of an individual sample
inthei.i.d. case. In this case the braces around the element
can also be omitted, that is,

(F;{b}) = ¢(F;b).

Thenext propositiongivesthe probability that inthei.i.d.
casetheoutput of asoft erosion or asoft dilationresultsfrom
the samples corresponding to the soft boundary of the struc-
turing set.

Proposition 1 Let F' be a soft erosion or soft dilation with
the structuring system [B, A, r]. Then

s (214 /(7).

Proof. Let F' bethe soft erosion with the structuring sys-
tem [B, A, r]. Moreover, let f:Z™ — R be some signal
satisfying thei.i.d. assumption and = be some pointin Z™.

Let us denote

fB={f(b):be B}
and
fena={f(b): b€ (B\A).}.

By the definition of the soft erosion, F'(z) € fp\ 4 if and
only if al of ther smallest elements of the set f5 belong to
the set fB\A-

Now let usconsider thedistribution of theindices(in Z™)
corresponding to the r smallest elements of the set fz. Be-
cause |B.| = |B| thereare

| B|

r
possible ways to place those indicesin the set B,.. On the
other hand, because |(B \ A).| = |B\ 4|,

)

of these events are such that all indices corresponding to the
r smallest elements are located in the set (B \ A)... Hence,
dueto thei.i.d. assumption

o(F;B\A) = P[F(2) € fp\al

- (/)

The proof for the soft dilation is similar, except that in-
stead of the r smallest values we consider the r largest val-
ues. |

Because by the definition of soft morphological filters
the output of a soft morphological filter is one of the input
window samples, it holds that

e(F;A) +o(F;B\A) =1

if F'isasoft erosion or soft dilation with the structuring sys-
tem[B, A, r]. Thus, wenow also haveaformulafor the prob-
ability that inthei.i.d. case the output a soft erosion or a soft
dilation results from the samples corresponding to the hard
center of the structuring set. However, the next proposition
gives an alternative way to calculate the same probability.

Proposition 2 Let F' be a soft erosion or soft dilation with
the structuring system [B, A, r]. Then

=1y |B\A|
p(F; A) = Z |B|| _| L ((|§))
k=0 k

Proof. Let F' bethe soft erosion with the structuring sys-
tem [B, A,r]. Moreover, let f:Z™ — R be some signal
satisfying thei.i.d. assumption, = be some point in Z™, and
let us again denote

fB={f(b):be B:},
fa={r):be A},

and
feva={f(b):b€(B\A).}
Suppose now that k£ € Z isafixed value such that 0 <
k < r—1 andlet usconsider the casein which noneof the k

smallest elementsof theset fp isintheset f4. By the proof
of Proposition 1 the probability of thiscaseis

B\ A Bl

k k
(i.e., al of the k smallest elementsof theset f5 areinthe set
fB\4). Butnowintheset fp thereare | B| -k elementsleft,
fromwhich | A| are containedin the set f4. Thus, dueto the

i.i.d. assumption, the probability that the (k + 1)th smallest
element of fg belongsto f4 is

Al
1Bl -k

Hence, by theformulaof the conditional probability the prob-
ability that the (k£ + 1)th smallest element belongsto f 4 with
the condition that none of the smaller elements of fg be-
longsto f4 is
AL ()
|B| — k (If\)




On the other hand, by the definition of the soft erosion,
F(x) € faif and only if at least one of the r smallest ele-
ments of the set f5 belongto theset f4. Thus,

oS A ()
BN =2 Thm

k=0

The proof for the soft dilation is similar. a

Assuming an i.i.d. input signal, each sample in the soft
boundary of the structuring set of a soft erosion or dilation
has an equal probability to be the output, as has also each
samplein the hard center of the structuring set of a soft ero-
sion or dilation. Thus, Propositions 1 and 2 give immedi-
ately away to cal cul ate the sel ection probabilitiesof the sam-
ples of asoft erosion and dilationin thei.i.d. case. The next
corollary summarizes these results.

Corollary 1 Let F' beasoft erosion or soft dilation with the
structuring system[B, A, r]. Then

r—1 1 (\B>A|) . .
N g(lBl—k)' R ifb e A;
P(F;) = (12\41) _
m, ifbe B\ A.

For soft openingsand closingsthe situation is morecom-
plex even in thei.i.d. case, because the intermediate signal
isnot necessarily ani.i.d. signal. Then, the formulasfor the
sampl e selection probabilitiesof the soft opening and the soft
closing derived directly using only the above formulas are
not exact, but they may till yield agood estimate.

4. OPTIMIZATION UTILIZING SAMPLE
SELECTION PROBABILITIES

When sample selection probabilities are used to control the
detail preservation ability of afilter, the most important se-
lection probability isthe midpoint selection probability, i.e.,
the selection probability of the sample corresponding to the
origin of the input window. The larger the midpoint selec-
tion probability is, thelesstheinput signal altersinthefilter-
ing. Thus, in order to have agood detail preservation ability,
a soft morphological filter must have arelatively high mid-
point selection probability.

In our approach the midpoint selection probabilities are
used as constraints when optimal soft morphological filters
are sought for some specific situation. That is, the midpoint
selection probability of the optimal filter should be over a
predetermined level.

The actual optimization is done using a test signal pair
where the noisy signal is the source signal and the desired
signal is the target signal. Thus, in order to have a low er-
ror, the optimal filter must removenoisewith efficiency. The

noise removing ability of the optimal filter is controlled by
the error criterion used in the optimization. However, acri-
terion that concentrates only on the noise removal, e.g. the
breakdown probability, usually does not produce unique so-
Iutions. Thus, a good error criterion for the optimization is
now such that it pays most attention to noise removal with-
out totally ignoring detail preservation.

Thefeasibility of any filter with respect to the midpoint
selection probability conditionis measured simply by calcu-
lating whether thefilter satisfiesthiscondition. If it doesnot,
apenalty is added to the error of the actual test image.

For soft erosions and soft dilationsit is usually possible
to use the formulas derived above. Thus, the midpoint se-
lection probability condition for a soft erosion and a soft di-
lation can be expressed as afunction

= 10, ife(F;0) >3
B(F;5) = { 1, otherwise
where 3 is the desired midpoint selection probability level.

If it is not possible (or reasonable€) to use the formulain
a closed form to calculate the midpoint selection probabil-
ity, atest signal pair is needed for the calculation of an esti-
mate of the midpoint selection probability. This estimateis
then used to justify whether thefilter satisfies the given con-
straint.

The details of the use of the midpoint selection proba-
bility condition as the constraint in the optimization are the
same as with the breakdown point and breakdown probabil -
ity constraints. Dueto the limited space the detail s are omit-
ted (cf. [1, 3]).

5. EXPERIMENTAL RESULTS

The experimental testsin this paper are based on thefol-
lowing 2-D test case. Thetrainingimageisa505 x 20 part of
the512 x 512 gray-level image "Harbour”, with (4, 240) as
the coordinates of the upper left corner. The noisy training
image is corrupted by positive impulsive noise with proba
bility 0.1. Here, a positive impulse means the largest possi-
ble pixel value. The optimized filters are soft erosions with
structuring setsincluded inthe 5 x 5 sguare.

In the test case optimal soft erosionswith different mid-
point selection probability levels were found. As the error
criterion we used the M SE, which was now asimple choice
becausethe optimal soft erosion under the M SE (without any
constraints) removed practically all impulses. The midpoint
selection probability of the optimal soft erosion found was
5/9. Thus, in this experiment reasonabl e midpoint selection
constraints are larger than 5/9.

Figure 1 shows the error between the original training
image and thefiltered noisy training imagewhen the desired
midpoint selection probability level of the optimal soft ero-
sion varies from 0.55 to 1.0 (the largest possible). The soft
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Figure 1: The MSEs between the original training image and the filtered noisy training image as a function of the midpoint
selection probability level. (a) The M SE caused by the impul ses not removed, (b) The M SE caused by the removed impul ses,
(c) The MSE caused by the filtering of the noncorrupted pixels, (d) Thetotal MSE.

erosion with midpoint selection probability 1.0 is the iden-

tity filter. Thus, the rightmost valuein Figure 1d isthe orig-

inal M SE between the noisy and noise-free training image.

As mentioned above, the midpoint selection probability of

the optimal soft erosion found under the M SE (without any

congtraints) was larger than 0.55. Therefore, the total error

(Figure 1d) issmallest when the desired level is0.55. When

thedesired midpoint sel ection probability level increases, the
total MSE increases, first dowly and then more and more
rapidly. The reason for thisis that with moderate midpoint
selection probability levels, the optimal filter is still capable
of removing almost al of theimpul ses, but when the desired

level increases, more and more impulses remain in the im-

age after thefiltering.

Figures la-c give a more thorough insight on the error
components. As can be seen, the dominant part of the total
error is the one that is caused by the impulses that are not
removed. The other two components have asignificant role
only if the error caused by the remaining impulsesis small.
Moreover, the curve of the error caused by remaining im-
pulses (Figure 1a) has the same shape as the curve of the to-
tal MSE.

It is worth noticing that when the desired midpoint se-
lection probability level isless than or equal to 0.7 thereis
no differencein the error caused by remaining impulses. In
fact, in each of these cases almost all of theimpulsesarere-
moved. The increasing trend in the total MSE is now ex-
plained by the increasing error after impulse removal in the
impulse locations (Figure 1b). The reason for the increased
error after impulse removal is that (almost) perfect impulse

removal together with larger midpoint selection probability
levels leads to the use of larger structuring sets, which, on
the other hand, results in the increased average error when
the impulseisreplaced with anon-corrupted value. Thus, if
the number of theimpul sesremoved doesnot decrease or de-
creases only dlightly the total MSE caused by the removed
impulses increases. With larger midpoint selection proba-
bility levels than 0.8 the number of removed impulses de-
creases rapidly. Thus, also the error caused by the removed
impul ses starts to decrease.

Thedetail preservation ability of the optimal soft erosion
can be seen from Figure 1c, which shows the error caused
by the filtering of the noncorrupted pixels. As can be seen,
the curveis now the opposite when compared to that of Fig-
ure la. That is, when the desired midpoint selection proba-
bility level increases, also the detail preservation ability of
the filter increases.

Figure 2 showsin qualitativeand visual termstheresults
of our experiment. From left to right Figure 2 illustrates the
effect of requiring that the filters have an increasing mid-
point selection probability. Theimageisdivided into 10 re-
gionsfiltered with optimal filterswith the midpoint sel ection
probability constraint being 0.55, 0.60, 0.65, ..., 1.0. It can
clearly be seen that the filters with a smaller midpoint se-
lection probability remove disturbing noise more efficiently
than the others, but their drawback is the heavier blurring
visiblein Figure 3.

Figure 3 represents the difference between the original
noise-free test image and its filtered counterpart, using the
samefiltersasin Figure 2. Theimage obviously shows that



Figure 2: The noisy training image filtered by optima filters with midpoint selection probability levels
0.55,0.60,0.65, .. .,1.00.

Figure 3: The difference between the original image and its filtered counterpart by optimal filters with midpoint selection
probability levels0.55,0.60, 0.65, . . ., 1.00. For visualization purposes, theimage has been gamma corrected before printing
with gammavaluey = 10.

many moresmall detailshave been removed with filterswith Journal of Electronic Imaging, vol. 5, pp. 300-322,
a smaller midpoint selection probability (the leftmost end) July 1996.

than with filters with large midpoint selection probabilities
(the rightmost end). Even the shapes in the image can be
detected in the left hand side of the image. Figures2 and 3
may be summarized: alarge midpoint selection probability
level guarantees high efficiency in terms of detail preserva-
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