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ABSTRACT

A new method of controlling the trade-off between noise
attenuation and detail preservation in nonlinear filter design
is presented. The technique is based on an appropriate com-
bination of the sample selection probabilities of a filter with
traditional error criteria. The practical applicability of the
approach is empirically studied in connection with the train-
ing-based optimization of soft morphological filters. Also,
the formulas for the sample selection probabilities of the ba-
sic soft morphological filters are derived.

1. INTRODUCTION

The trade-off between detail preservation and noise attenu-
ation is one of the key issues in nonlinear filter design. The
more emphasis is laid on the preservation of the details, the
more noise tends to stay after filtering. In [1] and [3] the
trade-off was controlled using the concepts of the breakdown
probability and the breakdown point of the filter. There, the
aim was not to force the filters to maximal noise removal but
rather to preserve details while a desired amount of the noise
was to be removed. This paper addresses filter design prob-
lems where the aim is the converse, noise attenuation under
the requirement that a predetermined level of details is pre-
served. The detail preservation level is controlled by using
the concept of the sample selection probability. As the ex-
perimental case we have used soft morphological filters.

2. SOFT MORPHOLOGICAL FILTERS

Soft morphological filters are stack filters with many desir-
able properties, e.g., they can be designed to preserve details
well [4, 5]. The two basic soft morphological operations are
soft erosion and soft dilation. Based on these operations, two
compound operations, soft opening and soft closing, can be
defined in the usual way.

Definition 1 The structuring system [B;A; r] consists of
three parameters, finite sets A and B;A � B 6= ;, in Zm
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(where m 2 Z+ denotes the dimensionality of the signal
space), and an integer r satisfying 1 � r � maxf1; jBnAjg.
The set B is called the structuring set, A its (hard) center,
B nA its (soft) boundary, and r the order index of its center
or the repetition parameter.

The translated set Tx is defined by Tx = fx + t : t 2

Tg: A multiset is a collection of objects, where the repeti-
tion of objects is allowed. For example, f1; 1; 1; 2; 3; 3g =

f3}1; 2; 2}3g is a multiset. Soft morphological operations
transform a signal S(�) to another signal by the following
rules.

Definition 2 Soft erosion (soft dilation) of S(�) by the
structuring system [B;A; r] is denoted by S	[B;A; r] (S�

[B;A; r]), where S 	 [B;A; r](x) (S � [B;A; r](x)) is the
rth smallest (largest) value of the multiset fr}S(a) : a 2

Axg [ fS(b) : b 2 (B nA)xg.

Although there are no analytical criteria for deciding
which soft operation (and with which parameters) is the best
for some situation, a suitable operation and its parameters
can be found using supervised learning methods, e.g., simu-
lated annealing and genetic algorithms [2]. Of course, some
training set, for which the desired output is known, is needed.

3. SAMPLE SELECTION PROBABILITIES

Let (X1; X2; : : : ; XN ) denote a real-valued sample vector
in the input window of a soft morphological filter. The defi-
nition of the soft morphologicalfilters implies that the output
is one of the input window samples. Thus, it is quite natural
to ask what is the probability for the jth sample of the win-
dow to be the output. More exactly, the jth sample selection
probability, 1 � j � N , is denoted by P [Y = Xj ] and is
defined as the probability that the output Y = Xj [6].

In the case of an i.i.d. input signal it is quite simple to
derive exact formulas for the calculation of the jth sample
selection probability of the soft morphological erosion and
dilation. To simplify the notations the following definition
is given.



Definition 3 Let F be a soft erosion or soft dilation with the
structuring system [B;A; r]. Then the i.i.d. sample selection
probability of the set D � B is denoted by '(F ;D) and is
defined by

'(F ;D) = P [F (x) 2 ff(d) : d 2 Dxg];

where f :Zm ! R is some i.i.d. signal and x is any point in
Z
m.

IfD has exactly one element Definition 3 reduces to that
of the sample selection probability of an individual sample
in the i.i.d. case. In this case the braces around the element
can also be omitted, that is,

'(F ; fbg) = '(F ; b):

The next proposition gives the probability that in the i.i.d.
case the output of a soft erosion or a soft dilation results from
the samples corresponding to the soft boundary of the struc-
turing set.

Proposition 1 Let F be a soft erosion or soft dilation with
the structuring system [B;A; r]. Then

'(F ;B nA) =

�
jB nAj

r

���
jBj

r

�
:

Proof. LetF be the soft erosion with the structuring sys-
tem [B;A; r]. Moreover, let f :Zm ! R be some signal
satisfying the i.i.d. assumption and x be some point in Zm.

Let us denote

fB = ff(b) : b 2 Bxg

and
fBnA = ff(b) : b 2 (B nA)xg:

By the definition of the soft erosion, F (x) 2 fBnA if and
only if all of the r smallest elements of the set fB belong to
the set fBnA.

Now let us consider the distribution of the indices (inZm)
corresponding to the r smallest elements of the set fB . Be-
cause jBxj = jBj there are�

jBj

r

�

possible ways to place those indices in the set Bx. On the
other hand, because j(B nA)xj = jB nAj,�

jB nAj

r

�

of these events are such that all indices corresponding to the
r smallest elements are located in the set (B n A)x. Hence,
due to the i.i.d. assumption

'(F ;B nA) = P [F (x) 2 fBnA]

=

�
jB nAj

r

���
jBj

r

�
:

The proof for the soft dilation is similar, except that in-
stead of the r smallest values we consider the r largest val-
ues.

Because by the definition of soft morphological filters
the output of a soft morphological filter is one of the input
window samples, it holds that

'(F ;A) + '(F ;B nA) = 1

if F is a soft erosion or soft dilation with the structuring sys-
tem [B;A; r]. Thus, we now also have a formula for the prob-
ability that in the i.i.d. case the output a soft erosion or a soft
dilation results from the samples corresponding to the hard
center of the structuring set. However, the next proposition
gives an alternative way to calculate the same probability.

Proposition 2 Let F be a soft erosion or soft dilation with
the structuring system [B;A; r]. Then

'(F ;A) =

r�1X
k=0

jAj

jBj � k
�

�
jBnAj

k

�
�
jBj
k

� :

Proof. LetF be the soft erosion with the structuring sys-
tem [B;A; r]. Moreover, let f :Zm ! R be some signal
satisfying the i.i.d. assumption, x be some point in Zm, and
let us again denote

fB = ff(b) : b 2 Bxg;

fA = ff(b) : b 2 Axg;

and
fBnA = ff(b) : b 2 (B nA)xg:

Suppose now that k 2 Z is a fixed value such that 0 �
k � r�1 and let us consider the case in which none of the k
smallest elements of the set fB is in the set fA. By the proof
of Proposition 1 the probability of this case is

�
jB nAj

k

���
jBj

k

�

(i.e., all of the k smallest elements of the set fB are in the set
fBnA). But now in the set fB there are jBj�k elements left,
from which jAj are contained in the set fA. Thus, due to the
i.i.d. assumption, the probability that the (k+1)th smallest
element of fB belongs to fA is

jAj

jBj � k
:

Hence, by the formula of the conditional probability the prob-
ability that the (k+1)th smallest element belongs to fA with
the condition that none of the smaller elements of fB be-
longs to fA is

jAj

jBj � k
�

�
jBnAj

k

�
�
jBj

k

� :



On the other hand, by the definition of the soft erosion,
F (x) 2 fA if and only if at least one of the r smallest ele-
ments of the set fB belong to the set fA. Thus,

'(F ;A) =

r�1X
k=0

jAj

(jBj � k)
�

�
jBnAj
k

�
�
jBj
k

� :

The proof for the soft dilation is similar.

Assuming an i.i.d. input signal, each sample in the soft
boundary of the structuring set of a soft erosion or dilation
has an equal probability to be the output, as has also each
sample in the hard center of the structuring set of a soft ero-
sion or dilation. Thus, Propositions 1 and 2 give immedi-
ately a way to calculate the selection probabilities of the sam-
ples of a soft erosion and dilation in the i.i.d. case. The next
corollary summarizes these results.

Corollary 1 Let F be a soft erosion or soft dilation with the
structuring system [B;A; r]. Then

'(F ; b) =

8>>>><
>>>>:

r�1X
k=0

1

(jBj � k)
�

�
jBnAj
k

�
�
jBj

k

� ; if b 2 A;

�
jBnAj
r

�
jB nAj

�
jBj
r

� ; if b 2 B nA.

For soft openings and closings the situation is more com-
plex even in the i.i.d. case, because the intermediate signal
is not necessarily an i.i.d. signal. Then, the formulas for the
sample selection probabilities of the soft opening and the soft
closing derived directly using only the above formulas are
not exact, but they may still yield a good estimate.

4. OPTIMIZATION UTILIZING SAMPLE
SELECTION PROBABILITIES

When sample selection probabilities are used to control the
detail preservation ability of a filter, the most important se-
lection probability is the midpoint selection probability, i.e.,
the selection probability of the sample corresponding to the
origin of the input window. The larger the midpoint selec-
tion probability is, the less the input signal alters in the filter-
ing. Thus, in order to have a good detail preservation ability,
a soft morphological filter must have a relatively high mid-
point selection probability.

In our approach the midpoint selection probabilities are
used as constraints when optimal soft morphological filters
are sought for some specific situation. That is, the midpoint
selection probability of the optimal filter should be over a
predetermined level.

The actual optimization is done using a test signal pair
where the noisy signal is the source signal and the desired
signal is the target signal. Thus, in order to have a low er-
ror, the optimal filter must remove noise with efficiency. The

noise removing ability of the optimal filter is controlled by
the error criterion used in the optimization. However, a cri-
terion that concentrates only on the noise removal, e.g. the
breakdown probability, usually does not produce unique so-
lutions. Thus, a good error criterion for the optimization is
now such that it pays most attention to noise removal with-
out totally ignoring detail preservation.

The feasibility of any filter with respect to the midpoint
selection probability condition is measured simply by calcu-
lating whether the filter satisfies this condition. If it does not,
a penalty is added to the error of the actual test image.

For soft erosions and soft dilations it is usually possible
to use the formulas derived above. Thus, the midpoint se-
lection probability condition for a soft erosion and a soft di-
lation can be expressed as a function

B(F ;�) =

�
0; if '(F ;0) � �;
1; otherwise;

where � is the desired midpoint selection probability level.
If it is not possible (or reasonable) to use the formula in

a closed form to calculate the midpoint selection probabil-
ity, a test signal pair is needed for the calculation of an esti-
mate of the midpoint selection probability. This estimate is
then used to justify whether the filter satisfies the given con-
straint.

The details of the use of the midpoint selection proba-
bility condition as the constraint in the optimization are the
same as with the breakdown point and breakdown probabil-
ity constraints. Due to the limited space the details are omit-
ted (cf. [1, 3]).

5. EXPERIMENTAL RESULTS

The experimental tests in this paper are based on the fol-
lowing 2-D test case. The training image is a 505�20part of
the 512� 512 gray-level image ”Harbour”, with (4; 240) as
the coordinates of the upper left corner. The noisy training
image is corrupted by positive impulsive noise with proba-
bility 0.1. Here, a positive impulse means the largest possi-
ble pixel value. The optimized filters are soft erosions with
structuring sets included in the 5� 5 square.

In the test case optimal soft erosions with different mid-
point selection probability levels were found. As the error
criterion we used the MSE, which was now a simple choice
because the optimal soft erosion under the MSE (without any
constraints) removed practically all impulses. The midpoint
selection probability of the optimal soft erosion found was
5=9. Thus, in this experiment reasonable midpoint selection
constraints are larger than 5=9.

Figure 1 shows the error between the original training
image and the filtered noisy training image when the desired
midpoint selection probability level of the optimal soft ero-
sion varies from 0.55 to 1.0 (the largest possible). The soft
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Figure 1: The MSEs between the original training image and the filtered noisy training image as a function of the midpoint
selection probability level. (a) The MSE caused by the impulses not removed, (b) The MSE caused by the removed impulses,
(c) The MSE caused by the filtering of the noncorrupted pixels, (d) The total MSE.

erosion with midpoint selection probability 1.0 is the iden-
tity filter. Thus, the rightmost value in Figure 1d is the orig-
inal MSE between the noisy and noise-free training image.
As mentioned above, the midpoint selection probability of
the optimal soft erosion found under the MSE (without any
constraints) was larger than 0.55. Therefore, the total error
(Figure 1d) is smallest when the desired level is 0.55. When
the desired midpoint selection probability level increases, the
total MSE increases, first slowly and then more and more
rapidly. The reason for this is that with moderate midpoint
selection probability levels, the optimal filter is still capable
of removing almost all of the impulses, but when the desired
level increases, more and more impulses remain in the im-
age after the filtering.

Figures 1a-c give a more thorough insight on the error
components. As can be seen, the dominant part of the total
error is the one that is caused by the impulses that are not
removed. The other two components have a significant role
only if the error caused by the remaining impulses is small.
Moreover, the curve of the error caused by remaining im-
pulses (Figure 1a) has the same shape as the curve of the to-
tal MSE.

It is worth noticing that when the desired midpoint se-
lection probability level is less than or equal to 0.7 there is
no difference in the error caused by remaining impulses. In
fact, in each of these cases almost all of the impulses are re-
moved. The increasing trend in the total MSE is now ex-
plained by the increasing error after impulse removal in the
impulse locations (Figure 1b). The reason for the increased
error after impulse removal is that (almost) perfect impulse

removal together with larger midpoint selection probability
levels leads to the use of larger structuring sets, which, on
the other hand, results in the increased average error when
the impulse is replaced with a non-corrupted value. Thus, if
the number of the impulses removed does not decrease or de-
creases only slightly the total MSE caused by the removed
impulses increases. With larger midpoint selection proba-
bility levels than 0.8 the number of removed impulses de-
creases rapidly. Thus, also the error caused by the removed
impulses starts to decrease.

The detail preservation ability of the optimal soft erosion
can be seen from Figure 1c, which shows the error caused
by the filtering of the noncorrupted pixels. As can be seen,
the curve is now the opposite when compared to that of Fig-
ure 1a. That is, when the desired midpoint selection proba-
bility level increases, also the detail preservation ability of
the filter increases.

Figure 2 shows in qualitative and visual terms the results
of our experiment. From left to right Figure 2 illustrates the
effect of requiring that the filters have an increasing mid-
point selection probability. The image is divided into 10 re-
gions filtered with optimal filters with the midpoint selection
probability constraint being 0:55; 0:60; 0:65; : : : ; 1:0. It can
clearly be seen that the filters with a smaller midpoint se-
lection probability remove disturbing noise more efficiently
than the others, but their drawback is the heavier blurring
visible in Figure 3.

Figure 3 represents the difference between the original
noise-free test image and its filtered counterpart, using the
same filters as in Figure 2. The image obviously shows that



Figure 2: The noisy training image filtered by optimal filters with midpoint selection probability levels
0:55; 0:60; 0:65; : : : ; 1:00.

Figure 3: The difference between the original image and its filtered counterpart by optimal filters with midpoint selection
probability levels 0:55; 0:60; 0:65; : : : ; 1:00. For visualization purposes, the image has been gamma corrected before printing
with gamma value 
 = 10.

many more small details have been removed with filters with
a smaller midpoint selection probability (the leftmost end)
than with filters with large midpoint selection probabilities
(the rightmost end). Even the shapes in the image can be
detected in the left hand side of the image. Figures 2 and 3
may be summarized: a large midpoint selection probability
level guarantees high efficiency in terms of detail preserva-
tion with a drawback of remaining impulses; to alleviate this
a moderate midpoint selection probability level can provide
a good compromise.
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