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 Abstract
The computational cost of morphological operations can
be reduced by proper decomposition of structuring
elements into smaller elements. In this paper, optimal
decomposition of a set of commonly-used structuring
elements is derived for two hardware architectures - 2-D
mesh array processors and 3 × 3 pipeline machines, based
on the decomposition algorithms reported in [1] and [2].
The resulting set of optimal decomposition provides a
useful reference guide to the design and optimal
implementation of morphological image filters.

1. Introduction
Morphological operations such as dilations and

erosions must be implemented efficiently on existing
image processing systems for practical applications.
These systems, however, are designed primarily for small
local operations[3], or support only local operations of
fixed size due to hardware constraints[4]. These inherent
system limitations require that large morphological
operation be converted into a sequence of small
operations, where the size of operation corresponds to the
size of structuring element. A single dilation(erosion) by
large structuring element can be represented equivalently
by a sequence of dilations(erosions) by smaller structuring
elements, provided that the original structuring element is
decomposed into a set of smaller structuring elements.
Hence, efficient implementation of morphological
operations can be realized by the decomposition of
structuring elements.

In general, the decomposition of a structuring
element is not unique, which naturally leads to an optimal
decomposition that minimizes the computational cost of
the resulting recursive operations.  In addition, the
optimization criteria depend on the architecture of the
system, hence different optimal decomposition is required
for different system architecture.

There exist a few algorithms for the decomposition
of structuring elements[5-10]. Recently, optimality issue
of structuring element decomposition has been

investigated by the authors[1, 2]. The following
theoretical issues have been addressed: Optimization
criteria for the particular architecture in terms of
computational cost; convexity of the structuring element
shape which imposes conditions on the decomposition;
and decomposability of a given structuring element which
is indicative of the existence of a solution. Algorithms for
the optimal decomposition and tests for the various
necessary decomposition conditions have also been
proposed in these studies.

In this paper, the procedures for optimal
decomposition are briefly reviewed for 2-D parallel array
processors[3] and 3 × 3 pipeline machines[4]. Then, a set
of standard, commonly-used structuring elements such as
squares, rectangles, triangles, lines, hexagons, octagons,
rhombuses and circles is decomposed using the given
decomposition algorithms, and the resulting sets of
optimal decomposition are presented. These
decomposition sets provide readers with a quick reference
guide for the optimal implementation of morphological
filters when arbitrary large structuring elements are
required for the applications on hand.

2. Optimal Decomposition of Structuring Elements
2.1. Definitions

Definition 1 : A binary image is simply-connected
if and only if it is 8-connected and contains no holes. All
images in this paper are assumed to be simply-connected
binary images.

Definition 2 : An image A is said to be equivalent
to an image B, denoted by A ~ B, if and only if A is
identical to B except for a position offset, that is, A is a
shifted version of B.

Definition 3 : An image A is a factor of an image S
if and only if S = A ⊕ B for some image B, where ⊕ is a
dilation operator. A factor A of S is a trivial factor if and
only if A is a one-pixel image or A ~ S. A factor A of S is
a prime factor if and only if every factor of A is a trivial
factor.
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Definition 4 : An image S is decomposable if and
only if S can be represented by S = A1 ⊕ A2 ⊕ ... ⊕ An
where each Ai is 3 × 3 or less and simply-connected.

2.2. For 2-D Mesh Array Processors
A procedure to determine optimal decomposition of

structuring elements for 2-D mesh array processors is
described, where the structuring elements are assumed to
be convex. On a 2-D mesh array processor, the cost of
morphological operation by a one-pixel structuring
element is the number of 4-connected shifts required by
the pixel in the structuring element, which is equal to the
distance of pixel in city-block metric[12]. Hence, the
worst-case cost of operation is the sum of distance of all
the pixels in the structuring elements in city-block metric.

A dilation between two convex images can be
represented by the chain code arithmetic[11].
Subsequently, it has been shown that every convex image
can be decomposed into a sequence of dilations by a set of
13 prime convex factors Qi given in Figure 1. It has also
been shown that in order for a given decomposition of S
into Qi to be optimal, the origin of Qi must be located at a
specific location as defined in Figure 1; the center of 3 × 3
grid indicates the origin. Note that Q1, Q2, Q3, and Q4
have more than one choice of origin.  Any non-prime
convex image can be further decomposed into all prime
factors without increasing the cost, which implies that
non-prime factors need not be considered in the
determination of optimal decomposition.

The decomposition of S into prime factors can be
determined recursively, that is, (i) determine a prime
factor A1 of S, resulting in S ~ A1 ⊕ B1; (ii) determine a
prime factor A2 of B1, resulting in S ~ A1 ⊕ A2 ⊕ B2;
(iii) repeat (ii) until Bi is prime and denote An ~ Bi,
resulting in S ~ A1 ⊕ A2 ⊕ ... ⊕ An; (iv) determine the
origin of each Ai such that S = A1 ⊕ A2 ⊕ ... ⊕ An ⊕ T,
where T is a one-pixel image containing a position offset.
In this way, any possible decomposition into prime factors
can be obtained, hence the problem of optimal
decomposition is narrowed down to two sub-problems: (i)
the order of prime factor selection and (ii) origin of each
factor.

If the origin of Qi is assigned as in Figure 1, the
cost is dependent only on T. In other words, for the
decomposition of S = A1 ⊕ A2 ⊕ ... ⊕ An ⊕ T, where Ai
is one of Qi’s in Figure 1, the contribution of A1 ⊕ A2
⊕ ... ⊕ An  to the cost is always constant, and the
contribution of T remains the only variable. Since T
depends only on the origins of Q1, Q2, Q3, and Q4 under
the constraints given in Figure 1, the origin of these four
factors must be assigned such that the cost of T is
minimized. A procedure to assign the origins to Q1, Q2,
Q3, and Q4 is given in [1].

Finally, it has been shown in [1] that Q1, Q2, Q3,
and Q4 must be selected prior to other factors in order to
minimize the cost of T. In conclusion, the optimal
decomposition results when the prime factors are selected
recursively in the order of Q1, Q2, Q3, Q4 and the rest of
factors, and the origin of each factor is assigned as in
Figure 1. Such a procedure for optimal decomposition is
implemented and applied to some commonly-used
structuring elements, and the results are presented in
Section 3.

2.3. For 3 ×× 3 Pipeline Machines
A procedure to determine optimal decomposition

for 3 × 3 pipeline machines is described, where no
restriction is placed on the shape of structuring elements.
On a 3 × 3 pipeline machine, the cost of morphological
operation is the number of 3 × 3 structuring elements
required for the whole operation. It has been shown in [2]
that not all structuring elements can be decomposed into 3
× 3 factors, hence the first step towards optimal
decomposition is to check if a given S is decomposable.

The decomposability check consists of 3 tests, and
is necessary only for concave images because convex
images are decomposable into 3 × 3 factors in Figure 1.
The first test checks the boundary of S. If S contains a
concave boundary that can not be fitted in a 3 × 3 region,
then S is not decomposable. The second test is to search
for the existence of necessary factors of S. For each
concave boundary of S, there must exist a 3 × 3 factor that
contains the same concave boundary. The theory behind
these two tests is that a new concave boundary cannot be
created by dilation of 3 × 3 simply-connected structuring
elements; the concave boundary must be copied from the
structuring elements.

Finally in the third test, linear equations are solved
for integer solutions, where the equations are constructed
based on S and its all 3 × 3 prime concave factors
determined above. If a solution does not exist, S is not
decomposable. Otherwise, the solution defines a sequence
of dilations A1 ⊕ A2 ⊕ ... ⊕ An ⊕B, where Ai  is one of
the 3 × 3 prime concave factors and B is a convex factor
of arbitrary size. If this sequence of dilations produces a
simply-connected image, then S is decomposable.

For a given decomposable S, its optimal
decomposition is sought for by further decomposing B
into prime convex factors and combining all resulting
small structuring elements into 3 × 3 images so that the
total number of  3 × 3 images is minimized. Each solution
defines one decomposition which has its own optimized
version. To find the global optimal decomposition among
all possible solutions, it is necessary to find all solutions
of the linear equation and to optimize each. This



procedure is implemented and applied to a set of
commonly-used structuring elements. The results are
shown in Section 3.

3. Optimal Decomposition of Commonly-Used
Structuring Elements

Figures 2 − 5 show the results of optimal
decomposition for symmetric polygons, rotated rectangles,
triangles, and circles, respectively. The optimality of each
decomposition is guaranteed from the proofs in [1] and
[2]. In these Figures, an integer n in front of the factor
denotes n-fold recursive dilations; when n = 0, the n-fold
dilation becomes an empty set. The center of 3 × 3 grid
denotes the origin.

In Figures 2 − 4, (a) shows the given structuring
element, where    indicates the origin, (b) shows the
optimal decomposition for 2-D mesh processors, and (c)
shows the optimal decomposition for 3 × 3 pipeline
machines. Note that in Figure 2, it is assumed that not
both a and b are zero; the case of a = b = 0 is considered
in Figure 3.

Many distinctive shapes are obtained based on the
values of a, b, and c in Figure 2; a horizontal or vertical
line when c = 0 and a or b is zero; a rectangle when c = 0
and none of a and b is zero; a hexagon when c ≠ 0 and  a
or b is zero; and an octagon when none of a, b, c is zero.
In Figure 3, when a or b is zero, it is a diagonal line; and
when a = b, it is a rhombus.

In this paper, the digital circle of radius i, Ci, is
constructed by the algorithm in [13]. For example,  C4 is
shown in Figure 5(a). Some of these digital circles
contain concave boundaries. Since the algorithm for
optimal decomposition of concave structuring elements
for 2-D mesh processors is not yet known(optimal
decomposition in [1] is for convex structuring elements
only), optimal decomposition of these concave circles
cannot be determined for 2-D mesh processors. However,
digital circles can be approximated by octagons and in
such cases, optimal decomposition is available and given
in Figure 2(b).

The procedure for optimal decomposition of
concave circles for 3 × 3 pipeline machines is known[2].
All concave circles up to radius 10 pass the decomposition
tests, and the optimal decomposition for 3 × 3 pipeline
machines is shown in Figure 5(b).

4. Conclusions
In this paper, two procedures for optimal

decomposition of structuring elements for 2-D mesh
processors and 3 × 3 pipeline machines were implemented
and applied to a set of commonly-used structuring
elements. The algorithms are based on the theoretical
studies in [1] and [2]. The decomposed results provide a

quick reference guide for the design and optimal
implementation of morphological image filters.
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Figure 1. Thirteen prime convex factors with an origin
indicated by the center of the 3 × 3 grid.
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Figure 2. Decomposition of symmetric polygons, SP. (a)
Polygon with a = 2, b = 3 and  c = 2. It is assumed that
not both a and b are zero. (b) Optimal decomposition for

2-D mesh array processors. (c) Optimal decomposition for
3 × 3 pipeline machines.
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Figure 3. Decomposition of rotated rectangles, Sr. (a)
Rotated rectangle with a = 4 and  b = 6. (b) Optimal
decomposition for 2-D mesh array processors. (c) Optimal
decomposition for 3 × 3 pipeline machines
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Figure 4. Decomposition of triangles, ST1 and ST2. (a.1)
Triangle ST1 with a = 4. (a.2) Triangle ST1 with a = 3. (b)
Optimal decomposition for 2-D mesh array processors. (c)
Optimal decomposition for 3 × 3 pipeline machines.
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Figure 5. Decomposition of digital circles, Ci. (a) Digital
circle of radius 4, C4. (b) Optimal decomposition for 3 ×
3 pipeline machines.


