
SYNTHESIS OF A PARALLEL, OPTIMAL STACK FILTER TRAINING

ALGORITHM

Kelvin L. Fong, George B. Adams III, Edward J. Coyle

School of Electrical and Computer Engineering

Purdue University

West Lafayette, IN 47907

fkelvin, gba, coyleg@purdue.edu

Jisang Yoo

Electronics Dept., Hallym University

1, Okcheon-Dong

Chuncheon, KOREA

jsyoo@sun.hallym.ac.kr

ABSTRACT

An adaptive algorithm for generating optimal stack

�lters is presented. The algorithm is iterative and

highly parallel. The algorithm is summarized, its time

complexities are analyzed, and implementation details,

such as data distribution and communication patterns,

are described including performance results from an im-

plementation on a 16K processor MasPar MP-1 SIMD

computer.

1. INTRODUCTION

Stack �lters are a class of sliding window, nonlinear

�lters. One of the main strengths of stack �lters is the

existence of an analytical technique for determining a

stack �lter which is optimal for estimation under the

mean absolute error criterion [4, 5]. Although these

results provide a systematic approach for designing an

optimal stack �lter, knowledge of the joint threshold

crossing statistics of the signal and noise processes is

required. Such knowledge is rarely available in practice,

particularly in image processing applications.

To alleviate these problems, adaptive stack �lter

training algorithms were developed. With these al-

gorithms, an optimal stack �lter can be determined

via observations of training sequences. Their principal

limitations are their excessive computational complex-

ity and lack of signi�cant parallelism. These factors

prevent both quick generation of stack �lters and any

signi�cant speedup from execution on highly parallel

computers.

Stack �lters are de�ned by two properties: the weak

superposition property known as the threshold decom-

position property, and an ordering property known as

the stacking property [7].

This work was supported by NSF Grants CDA-9015696,

CDA-9422250, and CDA-9617388.

Threshold decomposition allows analysis of a digi-

tal �lter to be broken down into its binary threshold

components. Let xl be de�ned as the binary image ob-

tained by thresholding the image X at level l. Let Tl(�)

denote this thresholding operator, so that xl = Tl(X).

Each binary pixel of the image is denoted xl(i; j), where

i; j are the coordinates of the binary pixel on the lth

threshold level. Therefore X(i; j) and xl(i; j) are re-

lated such that

xl(i; j) =

�
1; if X(i; j) � l

0; otherwise.

In this manner, X is the sum of its individual thresh-

olded component levels:

X =

MX
l=1

xl =

MX
l=1

Tl(X);

where M is the number of quantization levels of X . A

windowed section, W , of the image may be similarly

de�ned, and possesses the same decomposition proper-

ties:

W [i; j] =

MX
l=1

Tl(W [i; j]) =

MX
l=1

wl[i; j]

where wl[i; j] = Tl(W [i; j]) is the binary array obtained

by thresholding the pixels in windowW [i; j], referenced

at the coordinates i; j, at level l.

The stacking property imposes an ordering condition

onto the �lter's output. In general, the stacking prop-

erty requires that for any stack �lter binary output

equal to 1 at threshold level l, all outputs on the lev-

els below (less than) l must also be 1 for that window

position. The stacking property is de�ned as a par-

tial ordering of arrays, where wl[i; j] stacks on top of

wl�1[i; j] if every element wl[i; j] is less than or equal to

the corresponding element in wl�1[i; j]. In other words,

wl[i; j] � wl�1[i; j]; l = 1; 2; : : :M:

Note that this is a partial ordering since not all binary

patterns are related in this manner.

A common measure for stack �lter evaluation is the

mean absolute error (MAE) criterion. The MAE cri-

terion is determined by comparing the output X̂(i; j),

which is the �lter's estimate of X(i; j), based on the

windowed observation W [i; j] so that

MAE = E
h���X(i; j)� X̂(i; j)

���i :
The �lter generating the X̂(i; j) that minimizes the

MAE is the optimal stack �lter [4, 5].

2. ALGORITHM

Our training algorithm and its subroutines are pre-

sented in Figures 1 and 2. The training algorithm

Train takes as input parameters the original image,

Xorig, the corrupted image,Xcorr, the window size and

shape, n, and the images' size, x and y, and depth, z.

The bulk of the computation occurs in the three sub-

routines Determine-Dopt, Stack, and Threshold.

Train(Xorig; Xcorr; n; x; y; z)

1 Dopt Determine-Dopt(Xorig; Xcorr; n; x; y; z)

2 k 0

3 D(k) ~0

4 ~D(k) D(k) +Dopt

5 D(k+1) Stack(~D(k); n)

6 if D(k+1) has not converged

7 then inc(k)

8 goto Step 4

9 S Threshold(D(k+1); n)

10 return S

Figure 1: Stack �lter training algorithm.

2.1. Analyses

Train begins by determining the optimal decision vec-

tor, Dopt, and initializing the constrained decision vec-

tor (a decision vector constrained to obey the stacking

property), D(k). Train then iterates on D(k) until

it has adequately converged. Step 4 updates D(k) by

adding Dopt to create the unconstrained decision vec-

tor ~D(k). Step 5 enforces the global stacking property

on ~D(k) to produce D(k+1). If the MAE of D(k+1)

has suitably converged then D(k+1) is thresholded and

returned; otherwise another iteration begins. A proof

thatTrain converges to the optimal stack �lter is given

in [8].

Determine-Dopt(Xorig; Xcorr; n; x; y; z)

1 Dopt ~0

2 for i 1 to x

3 do for j 1 to y

4 do for each threshold level l

5 do if w
orig
l (i; j) � wcorr

l (i; j)

6 then inc(d
opt

wcorr

l
(i;j)

)

7 else dec(d
opt

wcorr

l
(i;j)

)

8 return Dopt

Stack(D;n)

1 i = 1

2 while i � 2n�1

3 do for j 0 to 2n � 1 by 2i

4 do for k 0 to i� 1

5 do if dk+j > di+j+k

6 then dj+k b
dj+k+di+j+k

2
c

7 di+j+k d
dj+k+di+j+k

2
e

8 i 2i

9 return D

Threshold(D;n)

1 for i 0 to 2n � 1

2 do if di � 0

3 then di 1

4 else di 0

5 return D

Figure 2: Train algorithm subroutines.

The algorithm's operation is illustrated geometri-

cally in Figure 3. Steps 4-8 in Train iteratively up-

dates the current decision vector and then enforces the

stacking property. This may be viewed as a series of

repeated approximations to force the direction of the

current constrained decision vector to converge towards

the direction of the optimal decision vector. Step 4

moves D(k) towards Dopt, but may create stacking vi-

olations in ~D(k). Step 5 must resolve these violations

while leaving D(k+1) closer to Dopt than D(k).

2.2. Data Representation and Distribution

The PRAM and MP-RAM parallel models [1] are used

in this paper's time complexity analysis. Two MP-

RAM interconnections are assumed; an all-to-all (cross-

bar) connected network, and a NEWS mesh connected

network. These are illustrated in Figure 4.

The original and corrupted images are stored as bi-

nary encoded data. Each decision variable is repre-

D

D

D
~

Dopt

(k)

(k+1)

(k+1) + D opt(k)= D

Figure 3: Training algorithm operation.

sented as an integer; hence, the decision vectors, Dopt

and Dk, each require 2n integers. Hence, for the MP-

RAM models, images and decision vectors may either

be partitioned across the processors or duplicated in

each processor's local memory. In practice su�cient

memory may not exist to store the entire decision vec-

tor in local memory. The choice of data distribution

on the MP-RAM may a�ect the performance of the

algorithm, as described later in section 3.2.

2.3. Time Complexity

This section analyses the e�ciency of Train by mea-

suring the time rate of growth to train a stack �lter

for a given image pair and window size. The nota-

tion �(n) will be used with the following de�nition.

�(g(n)) = f(n): There exist constants c1; c2 such that

for all n, 0 < c1g(n) < f(n) < c2g(n). See [3] for more

information on asymptotic notation.

Steps 2 and 7 of Train simply set and increment the

iteration counter variable, and each have time complex-

ity �(1) for both serial and parallel models.

Determine-Dopt �rst initializes all 2n decision vari-

ables, d
opt
i , in Dopt to 0; this requires �(2n) opera-

tions. The operations are independent of each other,

so the parallel time complexity is �(2
n

p
) for both the

PRAM and MP-RAM models. The remainder of the

subroutine compares each pixel's windowed threshold

level, wl[i; j], in the corrupted image to the original.

For a binary encoding, where each of the x � y pix-

els may take on any value from 0 : : : 2z � 1, this re-

quires x � y � (2z lg(z) + n2) observations, and either

an increment or decrement to the appropriate decision

variable. The thresholding details are omitted here

for brevity. Each observation and update is indepen-

dent of the others, so the complexity of Steps 3-7 is

�(xy(2z lg(z) + n2)) on a RAM, and �(
xy(2z lg(z)+n2)

p
)

(a)

PRAM

(b)

MP-RAM

MP-RAM

(c)

p x p Crossbar Switch

P0 P1 Pp

M0 M1 Mp.

.

p x p Crossbar Switch

P0

M0

P1 Pp

M1 Mp
.

M0

Mp

Pp

P0 Pp -1½

Mp -1½

Mp-p

Pp-p ½

½

Figure 4: The three parallel computation models con-

sidered: (a) PRAM, (b) MP-RAM with an all-to-all

interconnection, (c) MP-RAM with a mesh intercon-

nection.

on both PRAM and MP-RAMmodels.1 Assuming that

2n >> xy(2z lg(z) + n2), then the time complexity of

Determine-Dopt is �(2n) on a RAM, and �(2
n

p
) on

the PRAM. The individual decision variables in each

PE's local memory must be combined in MP-RAM

memory. If each decision variable is combined across

the PEs, then placed in its assigned PE's memory;

this requires �(lg(p)) communications and computa-

tions for each decision variable. The time complex-

ity of Determine-Dopt on an MP-RAM is therefore

�(2
n

p
+ 2n lg(p)) = �(2n lg(p)).

Stack operates on the unconstrained decision vec-

tor, ~D(k), so its complexity is a function of the 2n de-

1The time for MP-RAM interprocessor communications to

transfer a window's overlapping pixels between processors is

omitted in this analysis.

D
~

d7

d6

d5

d4

d3

d2

d1

d0

D
~

d7

d6

d5

d4

d3

d2

d1

d0

D
~

Step 1 Step 2 Step 3

d7

d6

d5

d4

d3

d2

d1

d0

Figure 5: Three steps, each parallel, to enforce the

stacking property for window size n = 3.

cision variables composing ~D(k). The bulk of the com-

putation occurs in Steps 6-7, within the triply nested

loop. Step 2 will iterate n times. The number of it-

erations performed by Steps 3-4 is a function of the

iteration variable i. Consider then for each iteration of

Step 2, each pair of decision variables in ~D(k) must be

examined; this requires 2n�1 operations. Whether or

not a stacking violation is found, each decision variable

pair must be examined in Step 5. Hence the time com-

plexity of Stack is n2n�1 or �(n2n) on a RAM. On a

PRAM Steps 3-4 are fully parallelizable, so the PRAM

complexity is �(n2
n

p
). Parallelizing the stacking cor-

rections on an MP-RAM requires data movements be-

tween processor pairs sending and receiving decision

variables to be compared. This requires d 2
n�1

p
e�(n�1)

parallel message exchanges, so the MP-RAM complex-

ity is �(d 2
n�1

p
e(n � 1) + n2n

p
) or �(n2

n

p
). Figure 5

illustrates the three parallel steps in Stack required

to impose the stacking property onto a decision vector

for a window size n = 3 �lter.

Threshold simply rescales the decision vector to

a binary vector; the resulting binary vector is the �nal

stack �lter. Every decision variable is examined and set

to 1 if greater than or equal to zero, or 0 if less than

zero. No interprocessor communications are required,

so the RAM, PRAM, and MP-RAM time complexities

are �(2n);�(2
n

p
), and �(2

n

p
), respectively.

The time complexity of Train is summarized in Ta-

ble 1. As long as the number of iterations performed in

Train is much less than 2n, which we have observed

to be the case in practice, the asymptotic complexities

are not a�ected by the number of iterations performed

(though the execution time may certainly be).

Table 1: Train time complexity.

Routine Complexity

RAM PRAM MP-RAM

Train �(n2n) �(n2
n

p
) �((lg(p) + n

p
)2n)

Det-Dopt �(2n) �(2
n

p
) �(2n lg(p))

Stack �(n2n) �(n2
n

p
) �(n2

n

p
)

Threshold �(2n) �(2
n

p
) �(2

n

p
)

3. IMPLEMENTATION

3.1. The MasPar MP-1

The MasPar MP-1 [2] SIMD computer operated by

Purdue University's Parallel Processing Laboratory is

con�gured with 16,384 processor elements (PEs). The

data parallel unit includes the array control unit, PE

array, and communication mechanisms. Each PE has

16 Kbytes of RAM available. The PE array is a 2D ma-

trix representation of all the PEs in the system. A sys-

tem has 1K, 2K, 4K, 8K, or 16K PEs that are arranged

in a matrix with either an equal number of columns

and rows or one that has twice as many columns as

rows. The PEs are arranged in clusters of nonoverlap-

ping 4�4 matrices of 16 PEs and 16 processor memories

per cluster.

5 10 15 20 25
Window Size (pixels)

2.0

2.5

3.0

3.5

M
ea

n
A

bs
ol

ut
e

E
rr

or

MAE

0.01

1

1e+02

1e+04

1e+06

T
im

e
(s

ec
)

Time

Figure 6: MAE and training time plotted as a function

of windows size for einstein and einsteinI10 images.

Figure 6 is a plot of the MAE for stack �lters gen-

erated with Train for window sizes ranging from 9

to 25, and their corresponding training times. MAE

decreases somewhat linearly, while their corresponding

training times increase somewhat exponentially, with

increasing window size.

3.2. Decision Variable Observations

Two issues, regarding the relative sizes of the images

used to train the �lter and the size of the �lter window,

a�ected both the implementation of the algorithm and

the performance of the algorithm on the MasPar. For

example, training a 5�5 pixel �lter for a 512�512�8 bit

image yields a decision vector with 225 = 33; 554; 432

decision variables while 512 � 512 � 28 = 67; 108; 864

windowed threshold levels will be observed (or fewer,

when excluding image border pixels). Our experiments

revealed many stacking violations in Dopt for this case.

Furthermore for the 512� 512� 8 bit einstein images

training a 5 � 5 �lter, only 1,762,593 unique decision

variables were observed. On the other hand, training

a 3� 3 pixel �lter on the same image yields a decision

vector composed of 29 = 512 decision variables. For

the 256 � 256 � 8 and 512 � 512 � 8 size images we

examined, Dopt possessed no stacking violations for the

3� 3 window size.

Our experiments support the interpolation between

these two data points. When the decision vector is un-

derobserved (decision variables are not observed when

determining Dopt) many stacking violations result in

Dopt, while the converse (all decision variables are ob-

served when determining Dopt) results in few if any

stacking violations in Dopt. If Dopt possesses no stack-

ing violations, Dopt corresponds to the optimal stack

�lter, and Train converges after one iteration. If Dopt

possesses many stacking violations, the optimal stack

�lter di�ers signi�cantly fromDopt and many iterations

are required to converge to the optimal constrained de-

cision vector.

Also the most e�cient manner of combining the indi-

vidual PE observations into Dopt on an MP-RAM may

vary depending on whether Dopt is underobserved. For

example, if Dopt is fully observed, each decision vari-

able may be combined and placed into its respective

PE's memory. If Dopt is largely underobserved, this

will result in few processors doing useful work in the

combining process, because most decision variable val-

ues will be zero. In this case, having each processor

with an observed decision variable send its value to the

destination processor which then sums its value may

be more e�cient. This proved to be the case on the

MasPar.

Finally if Dopt is largely underobserved, memory

space may be saved by using a hash table to represent

Dopt. This would reduce the data space requirements

by almost 128 Mbytes when training a 25 pixel �lter

and Dopt is represented as an int array, while increas-

ing access times to Dopt by a constant factor. This

technique was not implemented in our experiments.

4. CONCLUSIONS

Because the operations on the training images andDopt

are largely independent, and because the size of the

training images and Dopt are fairly large, a great deal

of parallelism may be exploited in Train. The bulk

of the computation for large �lter sizes occurs in the

repeated calls to the Stack subroutine. The MasPar

MP-1 computer proved to be an acceptable platform

for implementing Train, with all processors enabled

for much of the algorithm when training �lters of size

15 and greater. Finally the relative sizes of the training

image and the �lter window signi�cantly a�ects both

the performance and implementation of the algorithm,

in terms of the number of iterations required to con-

verge to the optimal stack �lter, the method of com-

bining Dopt on an MP-RAM multiprocessor, and the

data representation of Dopt.

5. REFERENCES

[1] George S. Almasi and Allan Gottlieb. Highly Paral-

lel Computing. The Benjamin/Cummings Publish-

ing Company, Inc., Redwood City, CA 94065, 1994.

[2] T. Blank. \The MasPar MP-1 Architecture" in

Compcon Spring 1990, pp. 20-24, February 1990.

[3] Thomas H. Cormen, Charles E. Leiserson, and

Ronald L. Rivest. Introduction to Algorithms. The

MIT Press, Cambridge, MA, 1991.

[4] E. J. Coyle and J.-H. Lin. \Stack Filters and the

Mean Absolute Error Criterion" in IEEE Trans. on

Acoustics, Speech, and Signal Processing, vol. 36,

pp. 1244-1254, August 1988.

[5] E. J. Coyle, J.-H. Lin, and M. Gabbouj. \Optimal

Stack Filtering and the Estimation and Structural

Approaches to Image Processing" in IEEE Trans.

on Acoustics, Speech, and Signal Processing, vol.

37, pp. 2037-2064, December 1989.

[6] J.-H. Lin, T. M. Selke, and E. J. Coyle. \Adaptive

Stack Filtering Under the Mean Absolute Error Cri-

terion" in IEEE Trans. on Acoustics, Speech, and

Signal Processing, vol. 38, pp. 938-954, June 1990.

[7] P. D. Wendt, E. J. Coyle, and N. C. Gallagher,

Jr. \Stack Filters" in IEEE Trans. on Acoustics,

Speech, and Signal Processing, vol. 34, pp. 898-911,

August 1986.

[8] J. Yoo. \Stack Filters: Design, Algorithms, and Ap-

plications." Ph.D. Dissertation, Purdue University,

August 1993.

