
IMPLEMENTATION OF PARALLEL ADAPTIVE STACK FILTER USING PVM

Youngrock Yoon, Hyeran Byun, Yilbyung Lee

Computer Science Department

Yonsei University

Seoul, Korea

lennon@csai.yonsei.ac.kr

Jisang Yoo

Electronics Department

Hallym University

Chuncheon, Korea

jsyoo@sun.hallym.ac.kr

ABSTRACT

Stack �lter showed good performance for signal restora-
tion and noise reduction especially for impulsive noises,
but required too much resource. Parallel adaptive stack
�ltering algorithmwas developed to overcome this prob-
lem and implemented on parallel architecture. We im-
plemented this algorithm using new heterogeneous par-
allel computing environment known as parallel virtual
machine(PVM), using a well-knownmaster-slave scheme.
Load balancing, which is another important factor of
heterogeneous computing, was used to balancing work-
loads of each host which is used as a separated parallel
processor. It showed a better performance than pre-
vious implementation, when it was applied to a big
image with large window size using reasonable number
of hosts as the parallel processor.

1. INTRODUCTION

Among the many non-linear �lters, stack �lter has su-
periority due to its known optimal training algorithm
using mean square error criterion. However, because
of its serial nature, implementing stack �lter required
huge amount of time and computational resource. Fast
parallel adaptive stack �lter was developed to reduce
computational time [1], and was implemented on the
machine which has parallel architecture.

An emerging tool of parallel scheme, known as par-
allel virtual machine(PVM) has enabled many serial-
natured network-available architecture to work as a
parallel machine [2]. Architectures, which are com-
posed of many workstations and PCs working with lo-
cal area network, are common in most computing en-
vironment around the world recently.

We developed a new implementation of parallel adap-
tive stack �lter using PVM, which used master-slave
scheme of PVM, and simulated it with images cor-
rupted with impulsive noise. This program also used
load balancing scheme, because of its heterogeneous

computing environment. We will introduce basics of
adaptive stack �lter, and PVM �rst, and show sug-
gested structure of new application program, and con-
clude with experimental results.

2. PARALLEL ADAPTIVE STACK FILTER

A stack �lter is a sliding window nonlinear �lter whose
output at each window position is the result of a super-
position of the outputs of a stack of positive Boolean
functions operating on thresholded versions of the sam-
ples appearing in the �lter's window.

Stack �lters satisfy the two properties, which are
the weak superposition property known as the thresh-
old decomposition [3, 4], and the ordering property
called the stacking property [3, 4, 5].

We can say a gray scale image X with pixel values
ranging between 0 and M may be represented as the
sum of series of binary-valued images,

X(s) =
MX
l=1

xl(s); xl(s) =

�
1; X(s) � l

0; X(s) < l

Now let W be the size P window of the �lter and let
W (s) be the array ofP points of the image that appears
in the windowW when its reference point is at position
s. Then, the window array WX (s) of the image X can
be similarly thresholded, so that

WX(s) =
MX
l=1

wX;l(s)

Each stack �lter Sf (�) is de�ned by a boolean func-
tion f(�) which satis�es a stacking property: if the out-
put of f applied to wX;l(s) is 1, then the output pro-
duced when f is applied to threshold level k must also
be a 1 if k � l. More formally, for all k � l

f(wX;k(s)) � f(wX;l(s))



A boolean function has this property if and only if it is
positive. Due to these two properties, the operation of
a stack �lters is the same as the operation of the corre-
sponding Boolean function for the thresholded binary
inputs.

Optimal stack �lter can be obtained by minimizing
the mean absolute error between the output of the �lter
and some desired image [6]. If X is the desired image,
and ~X is the corrupted version observed by the �lter,
then the error to be minimized by proper choice of f is

MAEf = EfjX(s) � Sf (W ~X
(s))jg

= Efj
MX
l=1

(xl(s) � f(w ~X;l
(s)))jg

�

MX
l=1

Efjxl(s) � f(w ~X;l
(s))jg (1)

By minimizing the bound in equation (1), we can �nd
the Boolean function f(�) which makes the best deci-
sion at each location s as to whether the desired image
value at s is less than l or not.

The optimal �ltering problem can then be formu-
lated as a zero-one integer linear program. However
the number of constraints on f implied by the stacking
property grows exponentially in the window size of the
�lter and knowledge of the joining statistics of the im-
age X and the process which corrupted it are required
for computing the coe�cient of the cost function.

Adaptive stack �ltering algorithm [7] were devel-
oped to minimize these problem, and new adaptive
stack �ltering algorithm was developed [1] to enhance
the algorithm's parallel nature. Unlike the original al-
gorithm, the stacking property will be enforced after
L observation have been taken. If we suppose L as
all possible observation from the training image and
di as the i

th decision variable of boolean function f(�)
for a boolean function f(�) can be completely speci�ed
by the decision vector D = (d1; d2; � � � ; d2P ) where P
is the size of window, then for each i, the number of
increment or decrement on di is the cost incurred if
the �lter outputs a 0 or 1 for each observation respec-
tively. Thus if di is thresholded at 0 to produce the
boolean table, the result is the optimal hard decision.
Though this is an optimal boolean function for �ltering
the corrupted image used in training process, it's not
a positive boolean function until checking and enforc-
ing the stacking property are applied. Two stacking
property checking and enforcing schemes which can be
parallelly implemented were also developed.

3. PARALLEL PROGRAMMING USING

PVM

3.1. Heterogeneous Computing

We can de�ne a heterogeneous computing environment
as a group of computers which is composed of di�erent
architectures, fast network connecting all computers in
the group, and programming environment familiar to
users.

The heterogeneous computing environment can im-
prove performance of the whole environment with rela-
tively small costs, not being limited to a speci�c appli-
cation. Unlike homogeneous environment, which will
distribute given parallel functions evenly to its proces-
sors, in heterogeneous environment, programmersmust
analyze the features of parallel functions and consider
the most appropriate mapping to a speci�c processor,
because the loads to each host as well as their process-
ing time will be varying. To accomplish this goal, re-
arranging an application parallelly, and examining the
function code type of each rearranged function must be
done, as well as mapping the code type to the bench-
marking of each computer, and distributing the loads
according to the result of mapping.

3.2. Parallel Virtual Machine(PVM)

PVM is a parallel programming environment which en-
ables a programmer to treat heterogeneous program-
ming environment as a parallel computer [2]. It uses
the message passing methodology, which was most ap-
propriate to heterogeneous environment and commonly
used as a method of data communication of distributed
computation.

PVM is composed of the user interface, which man-
ages each local host, and libraries, which o�er vari-
ous message-passing functions enabling programmers
to make parallel applications.

There can be many programming schemes using
PVM, but the master-slave scheme is widely used. This
scheme divides applications to two parts, main function
part and parallel function part. The slave functions
must be placed to each slave host compiled to be ex-
ecuted in each di�erent architecture. This can be a
constrained matter to programmers, but only the data
which are required to perform the application need to
be exchanged by message form, so the network loads
are minimized.

4. FILTER STRUCTURE

The whole program is composed of two parts, train-
ing and �ltering function, each of which use master-



slave scheme. The host used as the master provides
user interface. It �rst reads the original and impul-
sive noise-corrupted version of images for training and
�ltering. Before getting into functions, the master per-
forms benchmarking the current environment to dis-
tribute proper number of jobs to each host.

4.1. Master-slave structure

Master spawns slaves according to the PVM con�gu-
ration information, which contains name of hosts cur-
rently enrolled in PVM environment, relative speed of
each host, host architectures and task identi�cation
numbers, which is used internally to identify each host.
Once master successfully spawned slave tasks to each
host, master has the task id's which will be used to ex-
change messages between master and each task. Task
id's have to be given to each slave, so that each slave
can communicate with master or each other. Each
task can send or receive messages with speci�c mes-
sage type, so that each task can con�rm that they got
a message from right sender.

Functions for all of these works are provided in li-
brary, as well as the functions for each data type, which
provide data packing procedure to prepare messages.

4.2. Load Balancing

In master-slave programming scheme, the whole pro-
cess time is dependent on the time of the slowest slave,
so we can reduce the whole process time by distributing
proper number of tasks to each slave. In our program
the number of tasks to be distributed is the intensity
level of input image.

There are three important factor of benchmarking
in heterogeneous computing environment:CPU speed,
workload, and number of tasks to be given to each host.
CPU speed will not be changed, once we measured it,
but workload and number of tasks cannot be decided
constantly. Workload of each host can be obtained
by spawning each hosts a reasonable size of dummy
task and measuring the elapsed time of the task. Be-
cause PVM communicate messages via network, the
time needed to communicate via network is also impor-
tant factor in our case. Network time also varies much
according to the network loads of each time. Network
time for communicatingwith each host can be obtained
by measuring the time elapsed during sending a con-
stant size of message to each host and receiving the
message back.

Distributing tasks will increase the workload of each
host, so we have to consider the workload after dis-
tribute tasks to each host. Let Si be the CPU speed,
Wi be the workload, Ni be the network load and di

be the distribution of ith host, then we can de�ne a
balanced distribution measure �i:

�i =
Si

Wi +Ni + di

(0 � i � m�1;m = number of hosts)

m�1X
i=0

di = N (where N is the number of tasks)

Once Wi and Ni is obtained, we can balance �i by
controlling number di of ith host, so we can distribute
proper number of tasks to each host.

4.3. Training Process

Two images, which are original image and noise-corrupted
image, are sent to slaves to train stack �lter. These
images will be decomposed �rst and used to generate
boolean function table. As mentioned above load bal-
ancing result is the number of binary image planes to
be processed by each host.

Result of training function is a boolean function
table, to which stacking property is not enforced. Al-
though parallel algorithm of stacking property enforc-
ing has been developed, the time needed to enforce
stacking property in a serial manner outperformed par-
allel programming in PVM, because network load is
greater than actual processing time.

The whole training function structure is depicted in
�gure 1.

Slaves

to slaves
Spawn tasks

Master

and corrupted image

image

image

boolean

...

...

table
...

corrupted

boolean
table

...

Merging
received
boolean

function tables

Stacking property
enforcing

Send original image

Sending 

Decompose

Decompose

Training

Result

Figure 1: Training function structure

4.4. Filtering Process

Often size of boolean table is very large, though it is
trained with relatively small size of window. The mas-
ter sends the positive boolean function table to slaves
only once when it spawns slave processes. It repeats



sending corrupted image and receiving �ltered image
until the error between input and output converges.

The whole �ltering function structure is depicted in
�gure 2.

SlavesMaster

to slaves
Spawn tasks slaves

functions to 

for filtering

image to slaves

image

Add result

Calculate 
image error

result

corrupted
imageSend corrupted

...

...

...

R
e
p
e
a
t

Send boolean

Send

Send

Use given table

Decompose

Filtering

Add filtered
images

sub-image

Figure 2: Filtering function structure

5. EXPERIMENTAL RESULT

The environment we used is composed of several dif-
ferent architectures, which are SUN sparc machines
working on SUN OS, and Intel x86 machines working
on LINUX. Table 1 shows the heterogeneous environ-
ment we used for experiments. We used photo \Aerial"
(256�256,8 bits) and the photo \Albert" (512�512,8
bits) shown in �gures 3(a) and 3(b) respectively, as
noise-free original images. Stack �lter was trained with
images showed in �gure 3(c) and 3(d) which are cor-
rupted by impulses with 10% probability, each with
3 � 3 and 4 � 4 windows. The �ltered results of cor-
rupted images used in training are depicted in �gure
4.

Table 2 shows the absolute error per pixel between
each �ltered output and the original noise-free image,
and the execution time of the algorithm for the aerial
photo and Albert, respectively. To compare the re-
quired network time and workloads of each hosts when
the training process was performed, workloads and net-
work time averaged by each process were also listed.
Performance of this algorithm implemented on Mas-
Par MP-1 parallel computer [1] was also showed for
performance comparison.

Implementationon PVM showed better performance
for the image size 512�512 with window of size 4�4,
but not good for image size 256�256 and window of
size 3�3. This result is due to the fact that the execu-
tion time on slave host is getting smaller as the image

size and window size are getting smaller, although com-
munication overheads will not be changed.

(a) (b)
(c) (d)

Figure 3: Images used in experiments;(a) Aerial pho-
tograph with 256�256 resolution, (b) Albert with
512�512 resolution, (c) Aerial , (d) Albert. Noisy im-
ages in (c) and (d) are corrupted by impulsive noise
with an occurrence probability of 0.1.

6. CONCLUSION

In this paper, new implementation of parallel adap-
tive stack �lter is developed using PVM. In order to
maximize the merit of heterogeneous computing envi-
ronment, a new scheduling algorithm which is based
on the benchmarking appropriate to PVM computing
environment was suggested.

The performance is dependent on the number of
hosts used and the performance of each host, but rea-
sonable number of hosts and performance is su�cient
to show a good performance.

7. REFERENCES

[1] J. Yoo, K.L. Fong, E.J. Coyle, G. B. Adams III
\Fast algorithms for designing stack �lters," 31'st
Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL Sep. 29 -
Oct. 1 1993



Architecture Number of Relative Workload Network time Distribution
machines CPU speed (average) (average)

SUN Sparc 10 3 2000 2.14 0.30 30.0
SUN Ultra Sparc 3 4000 1.17 0.83 89.0

Intel Pentium 120MHz 2 2000 1.26 0.52 29.5
Intel Pentium 200MHz 2 6000 1.45 0.89 106.5

Table 1: PVM slave host environment used for experiments

Image Window Number of Absolute Training time Workloads Network time Error Time
updates Error (seconds) (average) (average) (MasPar) (MasPar)

Aerial 3�3 10L 2.924 4.66 1.58 0.98 2.926 0.42
4�4 20L 2.613 20.69 1.47 2.67 2.605 18.6

Albert 3�3 10L 3.223 18.16 1.59 4.36 3.223 0.83
4�4 20L 2.705 40.12 1.50 5.02 2.705 70.4

Table 2: Performance measured with Aerial and Albert images

(a) (b)
(c) (d)

Figure 4: The �ltered outputs by the application using
PVM; (a) Aerial with 3�3 window, (b) Albertwith 3�3
window, (c) Aerial with 4�4 window, (d) Albert with
4�4 window.

[2] Al Geist, A. Beguelin, Jack Dongarra, W. Jiang,
R. Manchek, V. Sunderam \PVM : parallel virtual
machine. A user's guide and tutorial for networked
parallel computing," The MIT Press, 1994

[3] J.P. Fitch, E.J. Coyle, N.C. Gallagher, Jr. \Me-
dian �ltering by threshold decomposition," IEEE
Trans. on Acoustics, Speech, and Signal Process-
ing, vol ASSP-32, no. 6, pp. 1183-1188, December
1984

[4] J.P. Fitch, E.J. Coyle, N.C. Gallagher, Jr.
\Threshold decomposition of multidimensional
ranked order operations," IEEE Trans. on Circuits
and Systems, vol. CAS-32, no. 5, pp. 445-450, May
1985

[5] P.D. Wendt, E.J. Coyle, N.C. Gallagher, Jr. \
Stack �lters," IEEE Trans. on Acoustics, Speech,
and Signal Processing, vol. ASSP-34, no. 4, pp.
898-911, August 1986

[6] E.J. Coyle, J-H. Lin, M. Gabbouj, \Optimal stack
�ltering and the estimation and structural ap-
proaches to image processing," IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. 37,
pp. 2037-2066, Dec. 1989

[7] J.-H. Lin, T.M. Sellke, E.J. Coyle, \Adaptive stack
�ltering under the mean absolute error criterion,"
IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. 38, pp.938-954, June 1990


