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1. INTRODUCTION

A cyclic component signal is a nonstationary signal de-
�ned as superposition of a trend, of one or more almost-
periodicities and an uncorrelated stochastic component.
The cycles of almost-periodicities are not, in contrast
to periodicities, the shifted replicas of each other, but
vary over time in wavelength, amplitude and shape.
The almost-periodic components of a signal are often
referred to as cyclic components [1] .

While the classical methods mainly decompose this
kind of nonstationary signals into trend, cyclic and
stochastic components using the information about the
wavelength (the Box & Jenkins SARIMA model, Trend/-
Seasonal Dynamic Linear Model [2], �lter banks with
�xed cut-o� frequencies), they fail when this informa-
tion is unavailable. This is the case when the signal is
generated by an unknown physical process, and when
the trend cannot be considered as piecewise stationary.
If instead of being piecewise stationary, the trend is,
say, ramplike, with randomly selected slopes over arbi-
trary intervals, its spectral content can burry the spec-
trum of a low-amplitude cyclic component. In such cir-
cumstances, the spectral techniques such as the Short
Time Fourier Transform fail to provide the information
about the wavelength.

Recently, we proposed a new class of methods for
determining the average cycle width in cyclic compo-
nent [3, 4]. These methods are based a multiscale ex-
traction of order statistics (OS), namely of extrema
and/or quasiextrema. We applied it by adjusting only
two parameters to decomposition of cyclic component
signals in various applications such as heart-rate [5]
and business statistics records. These parameters are
the `maximum' wavelength Tmax and the length of the
observed block of data N .

For a strictly cyclic component with period T and
a large range of trend slopes, it can be shown that the
average wavelength TAV converges to T for su�ciently

largeN . Hence, the method is unbiased. Sparse abrupt
changes of the trend do not impair the estimation of
TAV . Under constant signal level and arbitrary noise
distribution (null hypothesis), the (false alarm) proba-
bility of detecting a cyclic or composite signal can be
shown to be independent of the functional form and
the variance of the noise distribution. Accordingly, the
method can be considered nonparametric under null
hypothesis (no location shift).

2. DESCRIPTION OF THE METHOD

2.1. Detection of Characteristic Points

A cycle can be represented as a pattern of nonzero and
zero slopes. For example, a noiseless sinusoidal cycle
contains one positive and one negative slope, as well
as zero slopes in between, corresponding to the cycle
extrema. Similarly, cyclic component signals of other
functional forms contain zero-slope points, which obvi-
ously correspond to the possible extremumpoints. so it
is more di�cult to �nd their extrema. One can extract
consistent monotonic microtrends within a cycle, and
�nd the time instants where these microtrends change
their monotonic behaviour. Such time instants will be
referred to as characteristic points.

Let us suppose that we use aM+1�sample sliding
window for detection of characteristic points, such that
(M + 1)Ts = �t, where Ts is the sampling period and
�t the time duration of the interval covered by the
window.

Then, an ascending microtrend, for example, is de-
tected as the followingM + 1-sample pattern:
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It can be shown that the pattern (1) is equivalent to
the simultaneous increase in both extrema when aM�

sample sliding window shifts from position t � 1 to
position t, which allows detection of consistent trends
in noise.

For the detection of a decreasing microtrend, the
extrema in the pattern (1) should be replaced by their
opposites.

When running the sliding window over the signal,
we form the following binary output i(t): if either an
ascending or descending microtrend is detected, i(t) =
1, otherwise i(t) = 0. The characteristic points are
detected at time t as patterns fi(t � 1); i(t)g = f0; 1g
or fi(t� 1); i(t)g = f1; 0g

2.2. Estimation of the Average Wavelength

Let us consider the case of a cyclic component super-
imposed on a ramp, as shown in Figure 1. For sim-
plicity, the cyclic component is chosen to be a strictly
periodic sinusoid with period T and amplitude a. The
ascending ramp is assumed to have a slope b, such that
0 < b � 2�a

T
. The (M + 1)-sample patterns allow the

detection of cycle extrema for windows spreading from
points A to B, C to D, and C to E, because B, D
and E are the maxima, while A, C and C are the min-
ima of the respective (M + 1)-sample windows. On
the contrary, the windows CF and CG never meet the
pattern (1). These windows have lengths equal to an
integer multiple of the period T . For such windows,
if the current sample x(k) is the maximum of the lat-
est cycle, and hence the overall window maximum, the
dropped out sample x(k�M ) is the maximumof one of
the past cycles, and cannot be the window minimum,
so pattern (1) cannot be satis�ed and no characteristic
point can be detected. Similar behaviour of the cha-
racteristic point detector can be derived for descending
trends with slope b, such that 0 > b � �2�a

T
.

By using a range of window sizes from Mmin to
Mmax � T , the number of detected characteristic points
over an interval of N samples, where N > Mmax,
presents a cyclical behaviour, as presented in Figure
2. The wavelength T can be computed as the distance
between two neighbouring peaks.

2.3. Decomposition of Composite Signals

As stated in the �rst section, a bottom-up strategy
can be used to evaluate the general trend once the
information about the wavelength is available. Un-
der the assumption of small trend changes over a sin-
gle wavelength, the general trend � (i) can be recon-
structed as an irregularly sampled sequence, with the
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Figure 1: The characteristic points cannot be detected
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Figure 2: The number of characteristic points changes

cyclically with window length M . The average wave-

length, TAV , can be estimated by observing the distance

between peaks.

sampling period corresponding to the estimated wave-
length. Assuming that a cycle is symmetrically dis-
tributed around zero, the trend value � (K) for the ob-
served Kth cycle in the data block is equal to the mean
value of the composite signal over the wavelength TK :
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TK
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where the cycle index K can be expressed as the lowest
integer larger than or equal to the ratio of the observed
sample index i and the sum of all previous wavelengths
TJ , J � K
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The assumption about symmetrical distribution of
the cycle values around zero has been reported in the
literature [2] as the zero-sum constraint. As a matter
of fact, it implies that the mean value of the cyclic
component !(i) over an interval (K�bTK

2
c;K+bTK

2
c)

is zero.
The trend values � (i) can be interpolated between

irregularly sampled points (K; � (K)) in order to be de-
�ned for all signal samples. The easiest way to do it is
to use a linear interpolation. The lack of smoothness at
the ends of linear segments can be removed by a small
moving average �lter (typically 3-sample long).

Consequently, the cyclic component !(i) can be
computed as

!(i) = x(i)� � (i) (3)

In the case of several cyclic components, the above
procedure can be applied iteratively. For illustration,
if two cyclic components !1(i) and !2(i) are present
in the composite signal x(i), and if their wavelengths
di�er enough, the following algorithm is proposed.

1. Segment the signal x(i) into blocks of data of N
samples, N � Tmax.

2. Estimate the average wavelength of !1(i) for each
block of x(i). It is assumed that !1(i) has shorter
wavelengths than !2(i).

3. Extract the trend �1(i) by averaging the signal
x(i) and interpolating over wavelengths.

4. Extract !1(i) = x(i)� �1(i).

5. Estimate the average wavelength of !2(i) for each
block of �1(i).

6. Extract the trend � (i) by averaging the signal
�1(i) and interpolating over wavelengths.

7. Extract !2(i) = �1(i) � � (i).

The extension to additional cyclic components is
straightforward.

3. EFFECT OF NOISE

The opposite of a signal which is nonstationary with
respect to location signal is a stationary one, i.e., a
constant level corrupted with noise. Such a case will
be referred to as null hypothesis. Let us �nd the prob-
ability of detection of characteristic points under null
hypothesis (the false alarm probability). From pattern
(1), if the noise is independent and uncorrelated, the
probability that the actual sample x(t) is the window
maximum is 1

M+1
. Similarly, the probability that the

sample x(t ��t) is the window minimum, under con-
dition that x(t) is the maximum, is 1

M
.

Then the probability of detecting a nonzero slope
trend is

PT =
2

(M + 1)M
(4)

Hence, the characteristic points are detected in station-
ary noise with probability

Pc = PT (1� PT ); (5)

independently of the noise distribution. The number
of (false) characteristic points in a data block of N
samples is therefore

NF = Pc(N �M � 1) (6)

If the ascending and descending microtrends are dis-
tinguished, the number of false characteristic points is
reduced. In such a case, once a characteristic point is
detected at time k, no other characteristic point can
be detected until time k+M + 1. As a matter of fact,
the binary sequence i(t) between k and k+M has zero
values, due to the trailing extremum x(k), which is no
more located on one of the window edges, as in the
pattern (1). Hence, the expected number of detected
(false) characteristic points on interval of a �nite size
N > M would be

NF =
Pc(N �M � 1)

1 + PcM
: (7)

The evolution of NF with increasing the window length
M is shown in Figure 3 with dashed line. A nonstation-
arity test can be performed by computing the �2 statis-
tic with the obtained curve. Thus, the null hypothesis
can be rejected or accepted with certain probability.

4. ILLUSTRATIONS

4.1. A synthetic composite signal

In the uppermost diagram of Figure 4, we show the de-
composition of a synthetic composite signal, obtained
by superposing a sinusoid of constant amplitude a = 1
and period T = 10 over a trend consisting of a rect-
angular impulse and the lower half of an ellipse. The
signal contains N = 200 samples.

In the middle and the lower parts of Figure 4, the
extracted components are shown. The dotted line rep-
resents the original components. As expected, the largest
errors occur around steepest trends.

Note that similar results could have been obtained
using polynomial regression, but with a priori knowl-
edge of the order of the polynomialmodel and of the lo-
cation of the singular points in the signal. The Bayesian
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Figure 3: The number of characteristic points (the or-

dinate), detected for a range of window lengths M (the

abscissa) can be used for a nonstationarity test, which

should be satis�ed for composite signals.

algorithms, such as the Dynamic Constant Model [2],
can also produce satisfactory results using the strategy
described in Introduction, but after adjusting parame-
ters assigned to the trend and the periodicity variances.
Note that these parameters do not correspond to the
real component variances if the abrupt trend changes
are to be distinguished from cyclic changes.

4.2. An economic time series

Economic time series often exhibit a more or less evi-
dent cyclic behaviour. The car sales are known to ex-
hibit a complex annual pattern. The most favourable
season for car sales is the spring, and to a certain ex-
tent, the autumn. The number of sold cars per month
in United States, from January 1978 to February 1988
[6] is shown in the uppermost diagram of Figure 5. The
signal is scanned with a number of windows in order to
detect the characteristic points. The window lengths
range from three to sixty-four months. The series is
found to be nonstationary with respect to location, us-
ing the test described in Section 3. Hence, there are
trends with nonzero slopes, and the wavelength estima-
tion described above makes sense. The average cycle
length is estimated to be around 12 months, namely
12 � 4 months within 96% con�dence intervals, under
assumption of Gaussian distribution of distances be-
tween successive peaks of detected characteristic points
(drawn in the upper part of Figure 6). This indicates
that the car sales follow a varying but consistent yearly
seasonal pattern. On the basis of the estimated cycle
length, the decomposition procedure described above is
performed. In the middle and the lower parts of Figure
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Figure 4: The original signal (top of the �gure), the

extracted cyclic and trend components (middle and bot-

tom diagrams). The extracted components are com-

pared with respective original components. Most of the

time the extracted components �t the original ones, ex-

cept around abrupt trend changes.

5, the extracted components are shown.

For comparison, the Fourier periodogram for the car
sales data is shown in Figure 7. The data are smoothed
by the Blackman window in order to reduce Gibbs ef-
fect. The abscissa in the bottom diagram is expressed
as the number of cycles per year. The �rst two signif-
icant lobes occur at rates of approximately one third
and two cycles per year, respectively. The annual cy-
cle component cannot be distinguished, mostly because
of the spread of the ramplike trend spectral content
over the Fourier frequencies. The Fourier periodograms
should be mainly applied to detrended signals, neces-
sitating thus an additional technique which is, in the
presence of periodicities, a problem per se.
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